Title of project	Compilation of a balanced corpus of written Japanese: Infrastructure for the coming Japanese
	linguistics
Head Investigator	Kikuo Maekawa, The National Institute for Japanese Language, Department of Language
Name	Research, Group leader.
Abstract of	The aim of the project consists in the construction of a large-scale balanced corpus of the
Research Project	present-day written Japanese and its application to basic and applied areas. The research
	members are divided into two groups: the compilation group and the evaluation group. The
	former group constructs a balanced corpus of about 50,000,000 words consisting of samples
	taken randomly from two statistical populations. The latter group evaluates the corpus under
	construction from various points of view encompassing Japanese linguistics, teaching of
	Japanese as a second language, language planning, dictionary compilation, and natural language
	processing. The compilation group will make the most use of the feed-backs given by the
	evaluation group. The corpus compiled in this project will be a complete balanced corpus of the
	present-day written Japanese when it is coupled with the corpora that will be developed by the
Term of	NIJL during the same term. The entire corpus will provide a firm basis for the corpus linguistic
Project: 2006–2010	study of the Japanese language in the 21 st century.

Title of project	Multi-level Environmental Governance for Sustainable Development
Head Investigator Name	Kazuhiro Ueta, Kyoto University, Hall of Global Environmental Research, Professor
Abstract of	The objective of the scientific research in this priority area is to present ideas about the format of
Research Project	multi-level environmental governance required to achieve sustainable development. The theories of sustainable development and environmental governance have been undertaken not only by economic science, but also by fields such as political science, public administration, social science, environmentology, and urbanology. However, in order to contribute to the resolution of problems, it is vital to achieve dramatic expansion of the results achieved in these various fields, from a comprehensive viewpoint, and to integrate these results. Specifically, we analyze the dynamic state of economics, the heterogeneous manifestations of the effects economics have on the environment at various levels — global, regional, national, and local —
	and the interrelationship between these levels. We also clarify the overall structure of environmental governance undertaken in response to this environmental impact. Furthermore, in addition to theoretically presenting a concept of multi-level environmental governance, as it
Term of	should be realized, we also establish a strategy for making a transition to this type of
Project: 2006–2011	environmental governance.

Title of project	Creation of non-equilibrium soft matter physics: Structure and dynamics of mesoscopic systems
Head Investigator	Takas Ohta Kusta University Craduate School of Science Drofessor
Name	Takao Ohta, , Kyoto University, Graduate School of Science, Professor
Abstract of	Soft matter includes flexible materials such as polymers, liquid crystals, amphiphilic molecules,
Research Project	colloids, emulsions or biological materials. Soft matter is widely used in our daily life in food,
	cosmetic or electrical products. We elucidate structure formation and non-equilibrium states of
	soft matter which are subjected to external forces such as flow, electric, magnetic, stress or
	optical fields. Basic research on the structure and dynamics of soft matter through the
	combination of experimental and theoretical methods as well as computer simulation techniques
Term of	will provide us with a new way to regulate the mesoscopic structures which appear between
Project: 2006–2010	microscopic and macroscopic length scales.

Title of project	Linkages in biogeochemical cycles between surface ocean and lower atmosphere
Head Investigator Name	Mitsuo Uematsu, The University of Tokyo, Ocean Research Institute, Professor
Abstract of	Climate and environmental change will have significant impacts on and feedbacks to
Research Project	biogeochemical cycling in the ocean, on atmospheric chemistry, and on chemical exchange between the ocean and atmosphere. These couplings include atmospheric deposition of nutrients that control marine biological activity and ocean carbon uptake, and emissions of trace gases and particles from the ocean and their relations of importance in atmospheric chemistry and climate. Our goal is to achieve quantitative understanding of the key biogeochemical interactions and feedbacks between the ocean and atmosphere. We approach to resolve this linkage by field observation studies mainly using research vessels over the North Pacific Ocean.
Term of	Numerical modeling studies are required for their systematic evaluation and quantitative
Project: 2006–2010	assessment.

Title of project	New Developments of Flavor Physics
Head Investigator	Talas Venerales Osales Heisensitz Craduate School of Science Professor
Name	Taku Yamanaka, Osaka University, Graduate School of Science, Professor
Abstract of	The matter is composed of elementary particles, quarks and leptons. Each type of particles has
Research Project	its own "flavor", and the flavors are mixed together in weak interaction. However, the
	underlying structure of the flavors is still unknown. Also, physics beyond the standard model,
	such as supersymmetry, can influence the quark and neutrino mixings.
	We will make precision measurements on s, b, and t quark transitions, and aim to discover
	transitions from ν_{μ} to ν_{e} or ν_{τ} . We will also study the new experimental results
Term of	from theoretical viewpoints. These studies pursue a unified understanding of the structure of
Project: 2006-2011	the flavors, and the physics beyond the standard model.

Title of project	Probing the Dark Energy through an Extremely Wide & Deep Survey with Subaru Telescope
Head Investigator	Hiroshi Karoji, National Astronomical Observatory of Japan, Optical and Infrared Astronomy
Name	Division, Professor
Abstract of	One of the most important discoveries of the last decade in Astronomy is the acceleration of the
Research Project	expansion rate of the Universe, and the hypothetical existence of the "Dark Energy" to take
	account of this phenomenon. The main goal of this newly established research area is, firstly, to
	develop and manufacture an extremely wide field camera to be mounted on Subaru Telescope's
	prime focus and conduct a very deep survey of 1000 square degrees level. Secondly, it is
	intended to analyze thus obtained 100-200 million galaxies to extract pseudo-three dimensional
	mass distribution (including that of Dark Matter), and to investigate the existence and time
Term of	variation of Dark Energy by comparing the mass "map" with theoretical models and
Project: 2006–2011	simulations.

Title of project	Chemistry of Concerto Catalysis
Head Investigator	Takao Ikariya, Tokyo Institute of Technology, Graduate School of Science and Engineering,
Name	Professor
Abstract of	Many thousands of materials and products as well as fuels required by our modern societies
Research Project	would not be possible without existence of catalysts. Catalysts are also crucial for reduction of
	water and air pollution and for reduction of waste of natural resources and energy. However,
	recent advances in green and sustainable science and technology strongly demand more
	powerful and sophisticated catalysts with a tunable multifunction. This research area focuses on
	exploring conceptually new concerto catalysis by an appreciable improvement in the
	performance of transition metal-based molecular catalysts in terms of reactivity and selectivity,
	by a significant accumulation of knowledge of multimetallic catalysts with a multifunction, by a
	molecular-or nano-level architectural designing of the heterogeneous catalysts, and by efficient
	integration of biocatalysts and chemocatalysts. We believe that the emergence of powerful
Term of	concerto catalysis provides a great leap to reach more efficient, sustainable and green production
Project: 2006-2009	processes.

Title of project	Molecular Theory for Real Systems
Head Investigator	Shigeyoshi Sakaki, Kyoto Univeristy, Graduate School of Engineering, Professor
Name	Singeyosin Sakaki, Kyötö Onivensiy, Oracuate School of Engineering, Professor
Abstract of	In our project of "Molecular theory for real systems", we wish to clarify bonding nature,
Research Project	electronic structure, reaction process, and physicochemical properties of molecules and
	molecular systems not only by electronic structure theory of isolated molecule but also by
	consideration of solvation, entropy, coupling with nuclear wavefunction etc. To achieve these
	purposes, we need to develop high quality electronic structure theory for large system, efficient
	method for dynamics of large system, high quality molecular dynamic calculation theory,
Term of	quantum dynamics and so on. We apply these methods to complexed electronic systems,
Project: 2006-2009	nano-scale molecular systems, biological systems, and reaction dynamics in solution.

Title of project	Synergistic Effects for Creation of Functional Molecules
Head Investigator	Norio Miyaura, Hokkaido University, Graduate School of Engineering, Professor
Name	Nono Iviryaura, Florkaudo Oniversity, Oraduate School of Engineering, Floressoi
Abstract of	The progress of modern science and technology is largely dependent on the creation of
Research Project	functional molecules precisely controlled at the atomic level. This is because specific
	interactions and cooperative effects between the elements provide novel functions that are
	unobtainable through the individual elements. In this project, we pursue the fundamentals and
	applications of this "synergistic effect of elements". Particular interest will be mainly focused
	on heavy-element compounds, which are stereoelectronically dynamic and rich in functionality.
	The newly exploited reactions and compounds are expected to provide the basis for further
Term of	advance in socially important research areas including environmental chemistry, materials
Project: 2006-2009	chemistry, and nanoscience.

Title of project	Deepening and Expansion of Statistical Mechanical Informatics
Head Investigator	Yoshiyuki Kabashima, Tokyo Institute of Technology, Interdisciplinary Graduate School of
Name	Science and Engineering, Professor
Abstract of	Everything that exists in the natural world is made up of several types of elementary particles.
Research Project	However, we cannot discover everything about nature by identifying the properties of these
	particles. This is because observations of nature reveal that the collection of many particles can
	give rise to wholly unpredictable phenomena, regardless of what we know about the particles'
	properties. In the physical sciences, the importance of focusing on "a large number" of things is
	reflected in the expression, "More is different." By introducing this perspective into information
	science, we promote research under the common concept of "More is different in informatics as
	well." Preliminary studies have produced significant results regarding the basic theories of
Term of	information and communications. In this project, we expect to deepen our achievements in these
Project: 2006-2009	fields, while expanding into the fields of quantum information science and bioinformatics.

Title of project	Microwave-Excited, High-Temperature Thermally Non-Equilibrium Reaction Fields
Head Investigator Name	Motoyasu Sato, National Institute for Fusion Science, Coordination Research Center, Professor
Abstract of	Microwaves are not mere substitutes for conventional heating, but they reside in the new domain
Research Project	of materials science, namely, a microscopic and strongly thermal non-equilibrium system. Based on the research results to date, a concept of "Microwave-excited, high-temperature thermally non-equilibrium reaction field" is created. Experiments will be conducted to clarify the energy transfer from electromagnetic waves to materials, and the relaxation process of transferred energy in the materials. It will guide theoretical explanation and development of simulation method. The aim of this project is to develop academic achievements into new materials processing method in various industries. The target industries are, iron manufacturing in the heavy
	industry area where benefits of energy savings is the greatest and, in the high-tech area,
Term of	functional materials industries such as nano-science and metal glass for which an innovative
Project: 2006–2010	manufacturing method is constantly being sought.

Title of project	Single-Flux-Quantum Integrated Circuits based on Localized Electromagnetic Waves
Head Investigator	Nobuyuki Yoshikawa, Yokohama National University, Graduate School of Engineering,
Name	Professor
Abstract of	Single-flux-quantum (SFQ) circuits, which utilize picosecond small voltage pulses as logical bit
Research Project	information, have properties superior to semiconductor circuits because of their extremely small
	power consumption with high operating speed. Besides, because superconducting transmission
	lines propagate a localized electromagnetic wave ballistically without changing its waveform,
	they can be used as a flexible and high-throughput interconnection in the SFQ circuits. The aim
	of this research area is to establish future sub-terahertz integrated-circuit technologies, which
	enable clock frequency beyond 100 GHz, through the systematic study on their physical
	principles, device technologies, design technologies and their digital applications. These
Term of	researches will create new integrated electronics with excellent ability unachievable in the
Project: 2006-2009	present semiconductor electronics.

Title of project	Giant Straining Process for Advanced Materials Containing Ultra-High Density Lattice Defects
Head Investigator	Zenji Horita, Kyushu University, Faculty of Engineering, Professor
Name	
Abstract of	Lattice defects in metallic materials are important in determining the mechanical properties and
Research Project	they are normally produced by straining When the imposed strain is extremely large,
	microstructure refinement occurs to the range of submicrometer to nanometer. Furthermore,
	both strength and ductility are enhanced simultaneously. In this research project, we impose
	large strain in metallic materials using a process of severe plastic deformation and investigate the
	role of high density lattice defects for the microstructure refinement and simultaneous
Term of	achievement of strength and ductility. This project also aims to establish a new concept of
Project: 2006-2008	material strengthening based on high-density lattice defects.

Title of project	Technology Evolution for Silicon Nano-Electronics
Head Investigator	Shigeaki Zaima, Nagoya University, Graduate School of Engineering, Professor
Name	
Abstract of	Silicon ultra-large scale integrated circuits (ULSIs) are now being faced to various physical
Research Project	limits on the scaling. The aim of this research area is to establish the basic science and
	technology in realizing nano-scale complementary metal-oxide-semiconductor devices
	(Nano-CMOS) with high performance, new functionality and large-scale integration. This
	project focuses on (1) the development of new physics, new materials and new functionality for
	Nano-CMOS, (2) the development of process technologies to construct nano-scale structures
	and to control various fluctuations, (3) the understanding and control of physical and
	technological factors in device fluctuations, and (4) the integration and implementation of new
Term of	functions in Nano-CMOS, and will contribute to the innovation of future silicon
Project: 2006-2009	nano-electronics with high performance, low power consumption and high flexibility.

Title of project	Optoelectronics Frontier by Nitride Semiconductor -Ultimate Utilization of Nitride
	Semiconductor Material Potential-
Head Investigator	Yasushi Nanishi, Ritsumeikan University, Department of Photonics, Professor
Name	rasusin Ivanisin, Kusumerkan Oniversity, Department of Photonics, Photesson
Abstract of	Through the recent developments of the blue light emitting diode and the violet laser diode,
Research Project	nitride semiconductors have contributed a great deal to the development of our society. In terms
	of high intrinsic potential of the materials, however, nitride semiconductors presently produce
	only a part of the wavelength region from ultraviolet to infrared. The aim of this research area is
	to extract the full potential of nitride semiconductors and explore the new frontier of
	optoelectronics fields by developing novel crystal growth technique and deep understanding of
Term of	defect physics and luminescence dynamics. The result of the project will provide foundations for
Project: 2006-2010	advanced science and technology in the 21st century.

Title of project	Proteolysis in the Regulation of Biological Processes
Head Investigator	Noboru Mizushima, Tokyo Metropolitan Organization of Medical Research, The Tokyo
Name	Metropolitan Institute of Medical Science, Project Leader
Abstract of	It has been rapidly recognized that protein degradation is involved in not only disposal of
Research Project	unnecessary or damaged proteins, but also controlling various biological processes. The aim of
	this research area is to reveal the regulation mechanism, and the physiological and pathological
	roles of protein degradation systems, particularly focusing on "autophagy",
	"ubiquitin-proteasome" and "calpain" systems. In addition to analyses of each degradation
	system, we will promote cross-sectional studies between degradation systems. This research
Term of	project will provide new insights into both basic life science and clinical sciences, which would
Project: 2006-2010	complement recent genome science.

Title of project	Genome Barriers in Plant Reproduction
Head Investigator Name	Nori Kurata, National Institute of Genetics, Genetic Strains Research Center, Professor
Abstract of	The genome is a unique blueprint of organisms for each species. The genome acquires "genome
Research Project	barriers" that prevent crossing between different species. Human being has been generating novel plant species by crossing a great number of different species with one another to identify a rare combination that overcomes the "genome barriers". In this research area we collectively and integratively study functions of and interactions among genes working during sexual reproduction processes such as gamete generation, pollination, fertilization and seed development, and regulating the "genome barriers". The results obtained in this study will contribute to understanding the "genome barriers" and the mechanisms of the reproduction, and
Term of	will also serve as basic biological methods to generate novel hybrid plants that consist of highly
Project: 2006–2010	different genomes.

Title of project	Matrix of Infection Phenomena
Head Investigator Name	Akio Nomoto, The University of Tokyo, Graduate School of Medicine, Professor
Abstract of	Biological phenomena induced by microbe infections emerge as a result of numerous biological
Research Project	interactions between microbe molecules and host molecules. The aim of this study is to investigate molecular mechanisms of multiplication, life cycle, and pathogenesis of microbes. For this purpose, representative infectious agents in each microbe group are chosen. Then, host responses to microbe infection will also be studied. We identify host molecules involved in infection phenomena which support or inhibit microbe infections, and clarify biological functions of these molecules in the infection. Based on these studies, we deepen our understanding of how infection phenomena come into existence as a kind of natural ecology. At
Term of	the same time, we aim at construction of systems educating young researchers in this scientific
Project: 2006-2010	field.

Title of project	Molecular interaction and modal shift of cellular sensors
Head Investigator	Makoto Tominaga, National Institutes of Natural Sciences, Okazaki Institute for Integrative
Name	Bioscience, Professor
Abstract of	Cells respond dynamically to changes in their environment by sensing a variety of stimuli
Research Project	(including chemical and physical stimuli such as temperature and mechanical stress), converting
	information received into signals and transmitting the signals intracellularly or to other cells.
	Further, the information is integrated into sensory input essential for adaptation or survival of the
	cells. We call the molecules that detect extracellular stimuli 'cellular sensors'; we will clarify
Term of	how these cellular sensors adjust their functions (undergo a modal shift) depending on the
Project: 2006–2010	dynamic, spatiotemporal changes in the environment and depending on the species.

Title of project	Innovative nanoscience of supermolecular motor proteins working in biomembranes
Head Investigator	Hiroyuki Noji, Osaka University, The Institute of Scientific and Industrial Research (ISIR),
Name	Professor
Abstract of	ATP synthase and flagellar motor are supermolecular motor machinery driven by protons flux
Research Project	across the biomembranes in which these motors are embedded. Members of this research
	project individually blade trails in this research field. The main aim of this project is to promote
	interdisciplinary research collaborations among the fields of biochemistry, single-molecule
	biophysics, micro/nano- mechatronics, structural biology, and molecular simulations. In the
	scheme of this research project, several collaborative works are programmed. For example,
	collaboration between single-molecule biophysics and simulation of quantum mechanics is
	planned in which computer simulation of quantum mechanics for catalytic reactions on the ATP
	synthase will be performed to elucidate the results of single-molecule experiments. Such
Term of	strategic interdisciplinary collaborations will make a large progress of general understanding of
Project: 2006–2010	how protein converts energy into work.