科学研究費助成事業(特別推進研究)公表用資料 〔令和2(2020)年度研究進捗評価用〕

平成 2 9 年度採択分 令和 2 年 3 月 3 1 日現在

研究の概要(4行以内) 本研究では、原子分解能走査透過型電子顕微鏡法(STEM)による高速観察手法、並びに各種その 場観察法の開発を進める。両手法を融合したその場観察実験により拡散、変形・破壊、イオン 伝導等の諸現象に伴う原子・イオンダイナミクスの超高分解能直接観察を行い、ナノ構造設計・ 制御指針を確立、新物質・新材料開発の基礎・基盤学理を構築することを目指す。

研究分野:工学

キーワード:原子・電子構造評価

1.研究開始当初の背景

材料・デバイスのマクロな特性は、その内 部に形成された界面、表面、点欠陥などのナ ノレベルの微細構造(ナノ構造)と密接に関 連している。したがって、革新的な高機能・ 高性能材料を創出するためには、ナノ構造と 機能発現の本質的メカニズムを解明し、その 知見に立脚した材料設計を行う必要がある。 材料内部に局在するナノ構造を解明するた めには、原子分解能走査透過型電子顕微鏡 (STEM)が非常に有効であるが、現状は静 的な観察に留まっており、各種機能が発現す るダイナミックな環境下での直接観察まで には至っていない。

2.研究の目的

本研究では、最先端原子分解能STEM法を、 材料内部の超ミクロ現象の動的観察手法へ と大きく進化させ、材料ナノ構造形成、機能 発現の原子・イオンダイナミクスを可視化す ることを目指す。具体的には、構造材料、機 能セラミックス、触媒、電池など、材料内部

図1 本プロジェクトの概要

のナノ構造とそれに伴う原子・イオンダイナ ミクスが機能特性発現の鍵となる材料群を 対象とする。これより、原子・イオンダイナ ミクスの超高分解能直接観察に基づくナノ 構造設計・制御指針を確立し、新物質・新材 料開発の基礎・基盤学理を構築することを最 終的な目的とする。

3.研究の方法

原子・イオンダイナミクスの直接観察を行 うためには、原子分解能 STEM の時間分解能 を飛躍的に向上させる必要がある。このため、 電子プローブ高速スキャンシステム並びに 高速検出システムを開発し高速観察手法の 確立を図る。また、実環境下にて発現する原 子・イオンダイナミクスを STEM 内において 再現するため、STEM 観察下において温度や 荷重、電位といった試料環境を高精度にかつ 安定に制御するその場観察法の開発を進め る。開発の完了した装置・手法を順次投入し、 高空間・高時間分解能での原子・イオンダイ ナミクス観察を実施する。観察結果に基づい て、STEM 分光法やプローブ顕微鏡を用いた 局所物性測定、理論計算等を行い、原子・イ オンダイナミクスと材料物性との相関性を 明らかとする。上記手法を様々な材料系へ適 用することにより、材料ナノ構造の原子・イ オンダイナミクスの超高分解能直接観察に 基づく物質・材料創成を目指す。

- 4.これまでの成果
- (1) 高速 STEM 法の開発 STEM 法は、数十 pm 程に収束した電子プ

ローブにて試料を走査、透過・回折した電子 を検出し原子像を得るものである。従って、 STEM 法における時間分解能は走査速度およ び検出速度により大きな制約を受け、一般的 な原子像の取得速度は 1~2 フレーム / 秒(fps) 程度となっている。本研究では STEM 像取得 速度の高速化のため、走査コイルの低インダ クタンス化による電子線走査システムおよ び高速シンチレータを用いた検出システム の開発を行った。現有の STEM(ARM-300F, JEOL、300kV)にて動作試験を行った結果、512 × 512pixel の原子像が最高 25 fps で取得でき ることが確認され、STEM によるテレビレー トの動画取得が実現された。また、STEM 法 の空間分解能向上のための開発研究も同時 に推進した。ARM-300F に新規収差補正装置 を搭載することにより 40.5 pm (世界記録) を達成している。本成果は論文1にて公表し ている。

(2) その場機械試験法の開発と応用

変形や破壊現象の本質は荷重負荷に伴う 原子変位や原子結合の破断である。これらを 直接観察するため、その場機械試験法の開発 と応用研究を行っている。図 2(a)はその場ナ ノインデンテーション実験により Zr 添加 Al₂O₃∑13 粒界の破壊現象を捉えた TEM 像で ある。粒界に沿って亀裂が生じていることが 確認できる。図 2(b)は粒界破面の原子構造を 観察した STEM 像である。 試料端部の第一層 および第二層に強いコントラストが現れて おり、これはZr原子カラムに対応している。 このことより Zr 偏析層内において亀裂が進 行したことが明らかとなった。また理論計算 により、この破壊形態は Zr 酸化物の安定な配 位環境と深く関連すると考察された。本成果 は論文2にて公表している。

図 2 (a)その場インデンテーション実験によ る粒界亀裂の形成. (b)粒界破面の原子像と理 論構造モデル.

(3) 格子欠陥局所構造における物性評価 原子・イオンダイナミクスは転位、粒界、 異相界面といった局所構造において優位に 生じ、材料物性に様々な影響を与える。従っ て、原子・イオンダイナミクス観察の前段階 として静的観察により局所構造と物性との 相関を詳細に解析している。図3(a)はイット リア安定化ジルコニア(YSZ)中の転位コアの STEM 像である。図中中央に b=1/2[110]転位 が確認できる。さらに、STEM による X 線分 光を用いて Zr、Y の分布を得た。これらのデ ータより転位局所のイオン伝導率のバルク に対する比率を解析した(図3(b))。転位下 部にイオン伝導度の高い領域が形成されて おり、転位がイオン伝導パスとして機能する ことが明らかとなった。詳細は論文3にて報 告している。

図 3 (a)YSZ 中の転位コアの原子像. (b)転位 コア近傍におけるイオン伝導率(バルク比).

5.今後の計画

これまで開発してきた各要素技術を融合 し、種々の結晶性材料の局所構造における原 子・イオンダイナミクス直接観察実験を遂行 する。拡散、変形・破壊、イオン伝導等の諸 現象に伴う原子レベルの動的挙動と物性と の相関を探究していく計画である。

6.これまでの発表論文等(受賞等も含む) 論文

- 1. S. Morishita, R. Ishikawa, Y. Kohno, H. Sawada, N. Shibata, Y. Ikuhara, "Attainment of 40.5 pm spatial resolution using 300 kV scanning transmission electron microscope equipped with fifth-order aberration corrector", *Microscopy* **67**, 46-50, (2018)
- S. Kondo, A. Ishihara, E. Tochigi, N. Shibata, and Y. Ikuhara, "Direct observation of atomic-scale fracture path within ceramic grain boundary core," *Nature Communications* 10, 2112 (2019)
- B. Feng, R. Ishikawa, A. Kumamoto, N. Shibata, and Y. Ikuhara, "Atomic Scale Origin of Enhanced Ionic Conductivity at Crystal Defects," *Nano Letters* 19, 2162-68 (2019)
 - 他

他

受賞

- 1. Yuchi Ikuhara, Hatsujiro Hashimoto Medal, International Federation of Societies for Microscopy, September 14, 2018
- 2. 幾原雄一報公賞,公益社団法人服部報 公会、2017.10.06

7.ホームページ等

〇結晶界面工学研究室(幾原雄一研究室) http://interface.t.u-tokyo.ac.jp/japanese/ind ex.html

〇本特別推進研究特設ページ

http://interface.t.u-tokyo.ac.jp/tokusui/inde x.html