研究課題名	ILCのための最先端測定器の国際的新展開
研究代表者	山本 均
審査の所見	CERN の世界最高エネルギーの陽子・陽子衝突加速器 LHC で
	の実験では、近い将来、素粒子の質量の起源とされるヒッグス
	粒子などが発見される可能性がある。一方、電子・陽電子衝突
	は素粒子同士のクリーンな反応で、複合粒子同士の陽子・陽子
	衝突に比べてバックグラウンドが画期的に低く、LHC で発見
	された新粒子などの詳細研究を行うことによって LHC での
	「発見」を「新たな物理原理」にまで高めることができると考
	えられる。高いエネルギーの電子や陽電子は円軌道を回るとき
	に放射光を出して非常に大きなエネルギーを失うために、線形
	加速器を向かい合わせて建設し、一方から電子、他方から陽電
	子を直線で加速して正面衝突させる。これがリニアコライダー
	であり国際チームで設計が進んでいる。従って、LHCで発見
	された新粒子や未知の粒子の詳細研究を展開できる国際リニ
	アコライダーILC での実験の準備は、時宜を得た研究である。
	ヒッグス粒子の質量や結合定数測定で本質的に重要となる粒
	子の束(ジェット)のエネルギー精密測定において、本質的に
	重要な Particle Flow Algorithm という近年発展した解析方
	法を有効に機能させるためには、関連する3種類の測定器サブ
	システムである(1)バーテックス検出器、(2)飛跡測定器、(3)カ
	ロリメータが必須である。本研究は、これらの3種類のサブシ
	ステムに特化した測定器技術や物理解析方法の開発研究を国
	際的に牽引するという意欲的なものである。培われた技術は、
	ILC 計画が遅れても他に転用できる。特に、光電子増倍管に取
	って代わる、低電圧で動作し安価で小型の光検出素子 MPPC
	は、宇宙や生物などの分野、PET などの医療に、極めて有用
	である。これらの観点から、本研究は、特別推進研究として採
	択すべき課題であると判断した。