Title of Project: Functional Architectonics of Glyco-Biomaterials Designed via Cellulosic Nano-Assemblers

Takuya Kitaoka
(Kyushu University, Graduate School of Bioresource and Bioenvironmental Sciences, Associate Professor)

Research Area: Agricultural sciences

Keyword: Cellulose

Purpose and Background of the Research:
The research and developments of bio-functional materials have recently been promoted by a synergy of biotechnology and nano-engineering. Sugar-mediated interactions with living cells have attracted much attention in biomedical engineering fields. Therefore, novel glyco-materials with regulated sugar conformations as well as densities are required in the related research frontiers.

Cellulose, a β-1,4-linked D-glucopyranose biopolymer, is the major constituent of plant cell walls. It shows unique self-assembling properties due to the regular formation of intra- and intermolecular hydrogen bonds. Parallel chain alignment of native crystalline cellulose is regarded as clustering of non-reducing end groups of functional sugars.

The aim of this research project is the functional design of biomimetic glyco-materials. A new concept of nano-architectonics will be advanced by using “synthesized” cellulose as a nano-assembler of functional sugars. We are going to establish the fundamental research of structural and functional units contained in the glyco-materials, designed via cellulosic nano-assemblers.

Research Methods:
Our objective is the development of novel glyco-interfaces and nanoparticles with nano-structured functional sugars. For the synthesis, a combination of the following three techniques, established in our laboratory, is going to be applied:

1) Nonaqueous enzymatic glyco-synthesis
2) Vectorial glyco-chain immobilization
3) In-situ glyco-conjugation with AuNPs

Surface-protected enzymes are used to synthesize hetero-oligomers containing cellulose-units and bio-functional sugars which are further derivatized with an S-anchor. The designed oligo-sugars form nanolayers through self-assembling S-Au chemisorption on gold surfaces, resulting in the functional development of nano-structured glyco-biomaterials.

Expected Research Achievements and Scientific Significance:
Essential sugar-mediated interactions closely associated with living systems have become the focus of research and developments of advanced glyco-materials. This research project provides nano-architectural design approaches based on non-aqueous biocatalysis and vectorial sugar-chain conjugation for adapted bio-interfaces and nanoparticles with regard to cell-culture and biosensor studies. Additional information on the interactive phenomena at the glyco/bio-interfaces can be applied to design biomaterials. Cellulose-assisted clustering of defined carbohydrates that directly interact with living cells are going to allow us to achieve further bio-manipulation and to break into a new phase in glyco-material engineering fields.

Publications Relevant to the Project:

Term of Project: FY2009-2013
Budget Allocation: 77,100 Thousand Yen

Homepage Address and Other Contact Information:
http://bm.wood.agr.kyushu-u.ac.jp/
tkitaoka@agr.kyushu-u.ac.jp