令和 2 (2020)年度 基盤研究 (S) 審査結果の所見

研究課題名	陽子半径パズルの解明を目指した極限的低エネルギーでの電子・陽子弾性散乱
研究代表者	須田 利美 (東北大学・電子光理学研究センター・教授) ※令和 2 (2020)年 9 月末現在
研究期間	令和 2 (2020)年度~令和 6 (2024)年度
科学研究費委 員会審査・評 価第二部会に おける所見	【課題の概要】 本研究では、陽子の電荷半径が測定手法に依存するという 「陽子半径パズル」を解明するため、現有の低エネルギー電 子加速器を活用し、非常に小さい運動量移行での低バックグ ラウンド電子陽子散乱測定によって、陽子形状因子の2つの 独立成分も解析モデル依存性を排した測定で決定し、1%の 高精度で陽子半径を測定することとしている。 【学術的意義、期待される研究成果等】 陽子半径という基本物理量の精度及び信頼性向上に加え、 素粒子標準理論の検証にもなる学術的に重要な研究である。 問題とされる電荷半径の差異に対して十分な高精度測定であ り、陽子半径パズルの解決が期待される。また、Rydberg 定 数の精度向上といった波及効果も期待できる。