[Grant-in-Aid for Scientific Research (S)]

Broad Section D

Title of Project :Whole gamma imaging to break through the physicallimitation of positron emission tomography

YAMAYA Taiga

(National Institutes for Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, Group Leader)

Research Project Number: 20H05667 Researcher Number : 40392245 Keyword : PET, Compton camera, SPECT, nuclear medicine, scintillator

[Purpose and Background of the Research]

Positron emission tomography (PET), which uses a diagnostic drug labelled by a trace amount of weak radioactivity, has become a standard method for cancer diagnosis (figure 1), but PET does not make full use of detectable gamma-rays for imaging. Therefore, we aimed at replacing PET with whole gamma imaging (WGI), which is our original idea to utilize all detectable gamma-rays, for earlier diagnosis of intractable cancers such as multiple myeloma.

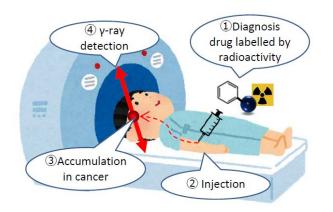


Figure 1 Schematic of the nuclear medicine imaging concept.

[Research Methods]

In WGI, an additional detector ring is inserted in a conventional PET ring so as to add a Compton camera function to a PET system. In addition to the coincidence detection of a pair of 511 keV photons, all other gamma-rays can be detected by means of the Compton camera, which localizes a radioisotope on a surface of a cone. Key methods to be studied in this project are (1) replacing a typical PET radioisotope such as ¹⁸F (110 min half-life) in a radiopharmaceutical by an unusual radioisotope such as ⁸⁹Zr (3.3 d half-life), which emits a 909 keV gamma-ray in addition to a positron; (2) hybrid imaging of PET and Compton imaging; and (3) changing the principle of cancer diagnosis from glucose metabolism to an antigen-antibody reaction (figure 2).

[Expected Research Achievements and Scientific Significance]

There are three step-by-step goals in this project. First, a WGI system in which 909 keV Compton imaging shows

better spatial resolution than PET will be developed. For this goal, a new scintillator which has better energy resolution than conventional PET scintillators will be developed. Second, a new imaging algorithm to combine both PET data and Compton imaging data will be developed so as to improve image quality. Third, diagnosis of multiple myeloma will be investigated as a clinical output of this project. Imaging demonstration of model mice will be done with the developed WGI system.

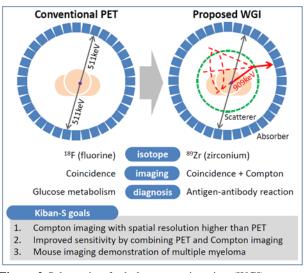


Figure 2 Schematic of whole gamma imaging (WGI) concept and the study.

(Publications Relevant to the Project)

- T. Yamaya, E. Yoshida, H. Tashima, et al., "Whole gamma imaging (WGI) concept: simulation study of triple-gamma imaging," J. Nucl. Med., vol. 58, no. supplement 1, 152, 2017.
- E. Yoshida, H. Tashima, K. Nagatsu, et al., "Whole gamma imaging: a new concept of PET combined with Compton imaging," Phys. Med. Biol., 65, 125013, 2020.

[Term of Project] FY2020-2024

[Budget Allocation] 151,900 Thousand Yen

[Homepage Address and Other Contact Information] nirs.qst.go.jp/usr/medical-imaging/ja/study/main.html yamaya.taiga@qst.go.jp