【研究の背景・目的】
界面は広範な科学・技術の分野で重要な役割を果たしているにも関わらず、その分子レベルでの理解はあまり進んでいません。本研究では界面研究の実験と理論で独自の方法論を開発してきた研究者が連携し、界面研究を強力に推進します。液体界面の基盤が応用に近い複雑な因子における動的・静的分子過程を明らかにし、それら界面現象の背景にある機構を解明して「界面分子はパルクの分子と何が異なるのか、またその違いがどのように界面特有な現象を引き起こしているのか」を明らかにします。

【研究の方法】
位相制御した界面選択的非線形分光と分子動力学計算を有機的に用いて以下の3つを骨子とした研究を展開します。
（1）液体界面の超高速振動ダイナミクスの解明
超高速現象の理解は物理化学・物理科学のフロンティアです。でも水の構造の動的挙動の解明は最も重要な要素である水の性質を理解するために基本的です。パルクの水の水分子の振動・回転・エネルギー・微分などの超高速ダイナミクスに精力的に研究されてきましたが、界面でのダイナミクスは分かっていません。位相制御した振動と波動発生光のフェート秒時間分解測定とそれを発展させた界面選択的二次元分光を利用してこれを解明します。

【期待される成果と意義】
本研究で得られる知見は界面科学を飛躍的に進歩させるだけでなく、界面現象が大きな役割を果たす環境化学、電気化学、材料化学など広い範囲の科学・技術にその基礎となる知的基盤を提供します。

【当該研究課題と関連の深い論文・著書】

【研究期間と研究経費】
平成 30 年度 - 34 年度
148,400 千円

【ホームページ等】
https://spectroscopy.riken.jp/
tahei@riken.jp