[Grant-in-Aid for Scientific Research (S)] Biological Sciences (Medicine, Dentistry, and Pharmacy)

Title of Project : Stem Cell Regulation and Dynamics in Hair Follicle Regeneration and Aging

Emi Nishimura (Tokyo Medical and Dental University, Medical Research Institute, Professor)

Research Project Number : 26221303 Researcher Number : 70396331 Research Area : Stem cell biology, dermatology, experimental pathology Keywords: regeneration, aging, hair loss, tissue stem cells, self-renewal

[Purpose and Background of the Research]	5) Development of methods to promote stem cell
In rapidly aging societies, it is urgent to address	regulation and rejuvenation.
aging-associated diseases by understanding the	
underlying mechanisms of aging-associated tissue	Expected Research Achievements and
declines.	Scientific Significance
Hair loss and hair graying are typical aging phenotypes	We aim to elucidate tissue aging mechanisms by
in mammals, but the underlying mechanisms of aging	focusing on stem cell aging in hair follicles. Our
are still largely elusive in most tissues. Aging-associated	approach will enable us to determine whether
somatic stem cell changes have also been reported in	tissue aging is programmed or not and also
different tissues, but the exact mechanisms underlying	whether the changes originate from stem cells or
the expression of aging phenotypes and whether tissue	other cell populations. Application of the key stem
aging programs exist is still largely unknown. We have	cell regulators which govern tissue aging will be
studied the mechanisms of aging-associated hair graying	beneficial for regenerative medicine and the
and hair loss by focusing on adult stem cells. We	prevention of aging-associated diseases.
previously identified melanocyte stem cells (McSCs)	prevention of aging associated diseases.
within the bulge-subbulge area of mouse hair follicles.	[Publications Relevant to the Project]
That population is cyclically activated to self-renew and	• Tanimura S et al. Hair follicle stem cells provide
to provide mature melanocytes for hair pigmentation	a functional niche for melanocyte stem cells. Cell
(Nishimura EK et al. 2002). Our chronological analysis	Stem Cell, 8, 177-187, 2011.
of McSCs and hair follicle stem cells (HFSCs), which	· Inomata K et al. Genotoxic stress abrogates
function as niche cells for McSCs (Tanimura S et al.	renewal of melanocyte stem cells by triggering
2011), demonstrated that mouse hair follicles age	their differentiation. Cell. 137(6):1088-99, 2009.
through the defective renewal of McSCs. McSCs	• Nishimura EK et al. Mechanisms of hair
differentiate into pigment-producing melanocytes in the	graying incomplete melanocyte stem cell
niche without renewing themselves under excessive	maintenance in the niche Science. 307(5710):720-724. 2005.
genomic stress or with aging (Nishimura EK et al. 2005,	• Nishimura EK et al. Dominant role of the niche
Inomata K et al. 2009). As the niche plays a dominant	in melanocyte stem cell rate determination.
role in McSC fate determination (Nishimura EK, 2005),	Nature. 416(6883):854-60, 2002.
aging-associated tissue changes in hair follicles may	
primarily originate from the aging of HFSCs.	Term of Project FY2014-2018
In this study, we will characterize the underlying	
mechanisms of stem cell regulation and dynamics in	[Budget Allocation] 150,000 Thousand Yen
hair follicle regeneration and aging especially by	
analyzing the signatures of aging HFSCs and	[Homepage Address and Other Contact
aging-specific tissue changes in mouse and human hair	Information]
follicles.	http://www.tmd.ac.jp/mri/scm/
Desserve Methods	

[Research Methods]

- 1) Analysis of HFSC aging signatures.
- 2) Analysis of hair follicle dynamics during aging by fate-tracing of HFSCs and other cell populations.
- 3) Clarification of key stem cell regulators in hair follicle regeneration and aging.
- 4) Clarification of the mechanisms of stem cell renewal and aging.