Title of Project: Spatiotemporal and structural analysis of the regulation of T cell activation

Takashi Saito
(RIKEN, Research Center for Allergy and Immunology, Group Director)

Research Area: Immunology
Keyword: Lymphocyte, Antigen recognition, Adaptive immunity

Purpose and Background of the Research

T cells play central roles in regulation of immune responses, but also induce autoimmune and allergic diseases upon excess activation. Therefore, elucidation of the mechanism of T cell activation and its regulation is a bridgehead to immune regulation. This project aims to clarify a full picture of the mechanisms of antigen recognition and activation of T cells and its spatiotemporal regulation by imaging and structural analyses.

On the basis of our finding that TCR microcluster is responsible for antigen recognition and T cell signaling, we will clarify the signal transduction pathways through TCR microclusters and various system for regulation, and the activation and regulation of autoreactive T cells. For this purpose,
① Molecular basis of antigen recognition and activation through structural analysis of the full-length of the TCR complex
② Intracellular spatial regulation and in vivo analysis of T cell activation signals through TCR microclusters.
③ Induction mechanism of “signal memory” from cell contact to lead activation.
④ Regulation of cell movement by activation signals.
⑤ Regulation of T cell activation by co-stimulation and innate signals.
⑥ Activation regulation of self-reactive T cells. We aim comprehensive analysis of T cell activation regulation through TCR microclusters.

Research Methods

1. Establishment of the structural basis of T cell activation by analyzing the whole structure of the complex of TCR-CD3 and pMHC. We apply the recent developed techniques of crystallization of transmembrane-containing proteins to TCR complex.
2. Intracellular spatial signaling and degradation regulation of TCR by TCR microclusters will be clarified. Activation regulation by co-stimulation (such as ICOS, PD-1) and innate signaling. These are performed using planar bilayer system containing GPI-anchored MHC/ICAM/CD80 and T cells expressing various fluorescent-tagged molecules.
3. Analysis of in vivo synapse formation and accumulation of “signal memory” by analyzing Ca signals.
4. Semi-activation stages of self-reactive T cells are analyzed by T-DC interaction.

Expected Research Achievements and Scientific Significance

We will clarify two issues. One is to clarify how to pre-activated T cells under steady-state condition and how and where they are fully activated. Second, spatiotemporal signal transduction of T cell activation will be clarified. On the basis of these analyses, not only simple inhibitors of kinases but also new generation of immune-modulators with the concept by taking consideration of spatiotemporal regulation. Elucidation of activation mechanism of self-reactive T cells may contribute for regulation of autoimmune and allergic diseases.

Publications Relevant to the Project


Term of Project: FY2012-2016
Budget Allocation: 167,700 Thousand Yen
Homepage Address and Other Contact Information:
http://www.rcai.riken.go.jp/group/signaling/index.html