[Grant-in-Aid for Scientific Research(S)] Science and Engineering (Engineering I)

Title of Project : Invention of Ion-Fluorescence Multi-Modal Image Sensor System For Elucidation of Cell Functions

Kazuaki Sawada (Toyohashi University of Technology, Electrical & Electronic Information Engineering, Professor)

Research Area : Semiconducting material, Device, Integrated circuit chip Keyword : Sensing, Integrated Multi-biosensor, Image sensor

illey word . Sensing, integrated mater stosensor,	illiage senser
[Purpose and Background of the Research]	[Expected Research Achievements and
A multi-modal sensor which can detect	Scientific Significance
simultaneously a neurotransmitter, light, and	We have been invented and developed a special
fluorescence on a same pixel is realized, and the	image sensor. The image sensor has a special
multi-modal bio-image sensor which can	sensor devises, which is able to catch several
discriminate from a role and work of the ion	information on one sensing area, and the image
channel which exists in a cell is fabricated.	sensor capable to take videos that indicate
The multi-modal bio-image sensors are fabricated	different information (fluorescence, chemical
with super-high resolution image sensor which is 1	concentrations, geometry, light intensity,
micron or less, and set primary neuronal cells of	place). These relationships of these
hippocampus and the brain slice of a mouse on this	information is reliable because these
bio-image sensor directly. A fluorescence, which	information are taken by one sensor. A flame
indicates intracellular ion information, and	rate will be decrease less than 10msec, and it
chemical signal, which was emitted from an ion	might be possible to take an image of release of
channel and neurotransmitter (acetylcholine,	neurotransmitter from synapses. The sensor is
glutamic acid, ATP), is observed by the proposed	very original and there is no related work in a
system simultaneously as a 2 dimensional images	world. If the image sensor is realized, the
(video). Corroboration work with the biochemistry	movement of ion through the ion channel will
field researchers will go on by using the novel	be clear as a video, and it will became a strong
bio-image sensor, which can be observed	tool to elucidation of cell functions. I believe
movements of the ion on the inside and outside	this novel image senor innovate an
through a cell to elucidate of cell functions.	environment of medical diagnosis and medicine
A motion of the ion of the inside and outside of a cell	manufacture.
which is impossible by the conventional optical	
migroscopo without labol. The nurness of this	Publications Relevant to the Project

microscope without label. The purpose of this propose is realization of the imaging system which can be visualized ion movements through the ion channel in real time without label.

[Research Methods]

The investigation has 2 parts, one is development of novel device and another is to apply the device in bio-medical fields. There are three issues which should be solved to realize novel bio-image sensor. (a) Development of Ion image sensor special fabrication process with 0.18micron (b) Development of special pixel meter rule. configuration for sub-micron pixel pitch image sensor. (c) Development of fabrication process to keep ion sensitivity on a sub-micron ion sensor. These issues are developed with a corroborator in LSI manufactory. The sensor of the 20-micron pitch which already developed is used until the multi-modal image sensor of a submicron pitch is realized.

[Publications Relevant to the Project] · Multimodal bio-image sensor for real-time proton and fluorescence imaging, Hirokazu Nakazawa, Makoto Ishida, Kazuaki Sawada, Sensors and Actuators B: Chemical, in press. • A Fused pH and Fluorescence Sensor Using

the Same Sensing Area, Hirokazu Nakazawa, Hiroyasu Ishii, Makoto Ishida, and Kazuaki Sawada, Appl.Phys.Express, No.3, 047001-3 (2010)

Term of Project FY2012-2016

(Budget Allocation) 134,200 Thousand Yen

[Homepage Address and Other Contact Information]

http://int.ee.tut.ac.jp/icg/