[Grant-in-Aid for Scientific Research(S)] Science and Engineering (Mathematical and physical sciences)

Title of Project : Molecular Conductors as Ultimate π -electron System

Reizo Kato (RIKEN, Condensed Molecular Materials Laboratory, Chief Scientist)

Research Area : Mathematical and physical sciences

Keyword : Molecular solid/Organic conductor, Electric and magnetic properties, Strongly

correlated electron system. Organic electronic material/device

correlated electron system, Organic electronic material/device	
[Purpose and Background of the Research]	Dirac cones.
Electrons in solid state exhibit a variety of	4. π -electron system under extremely high
electric and magnetic properties, depending on	pressure
orbital where electrons are accommodated. In	Using diamond anvil cell technique, we explore
molecular solids, π -electron systems formed by p	new electronic states of π -electron system under
and/or d orbitals have the following	extremely high pressure up to 40 GPa.
characteristics and have triggered extensive	_
researches	[Expected Research Achievements and
1) Simple and clear electronic structures	Scientific Significance
2) Low-dimensional and strongly correlated	We will enhance performance of π -electron
nature	materials up to the ultimate, using our original
3) Colossal responses to external stimuli	compounds and methods. We also develop novel
(magnetic field, pressure, temperature,	electric/magnetic properties and novel
lightetc.)	materials based on the collaboration between
4) Light and soft	physicists and chemists. This project will open
5) A variety of chemical modifications and	new interdisciplinary field of materials science,
molecular degrees of freedom	which constructs basis of molecular electronics
6) Stoichiometrically clean system with small defect can be obtained by low-energy wet	and devices.
process	[Dellistics Delement to the Desired]
In this project, we will quest for ultimate	[Publications Relevant to the Project]
π -electron system in molecular conductors and	• Y. Kosaka, H. M. Yamamoto, A. Nakao, M.
pursue possibilities of π -electron functions.	Tamura, and R. Kato, "Coexistence of Conducting and Magnetic Floatness Based on
pursue possibilities of <i>n</i> electron functions.	Conducting and Magnetic Electrons Based on Molecular π -Electrons in the Supramolecular
[Research Methods]	Conductor (Me-3,5-DIP)[Ni(dmit) ₂] ₂ ", J. Am.
Main topics are as follows:	<i>Chem. Soc.</i> , 129 , 3054-3055 (2007).
1. Dual function (itinerant/localized) π -electron	• N. Tajima, S. Sugawara, R. Kato, Y. Nishio, and
system	K. Kajita, "Effect of the Zero-Mode Landau
We have found a dual function π -electron	Level on Interlayer Magnetoresistance in
system where "one" kind of π -molecule plays	Multilayer Massless Dirac Fermion Systems",
"two" contrastive roles (metallic conduction and	Phys. Rev. Lett. 102, 176403 (2009).
paramagnetism with AF interactions). The	• Y. Kawasugi, H. M. Yamamoto, N. Tajima, T.
ground state associated with "Kondo effect"-like	Fukunaga, K. Tsukagoshi, and R. Kato,
behavior will be clarified by various methods	"Field-Induced Carrier Delocalization in the
including ESR and cyclotron resonance.	Strain-Induced Mott Insulating State of an
2. Strongly correlated π -electron FET (Field	Organic Superconductor", Phys. Rev. Lett., 103,
Effect Transistor)	116801 (2009).
We have succeeded in the fabrication of	
molecular Mott FET by using thin single crystal	[Term of Project] FY2010-2014
and obtained high device mobility. Using this,	
we will reveal mechanism of band-filling	Budget Allocation 167,500 Thousand Yen
controlled Mott transition, as well as	
enhancement of device performance.	[Homepage Address and Other Contact

3. Dirac π -electron system

Based on our finding of the first multilayer massless Dirac fermion system, we will investigate effects of carrier doping and tilted

[Homepage Address and Other Contact **Information**

http://www.riken.jp/lab-www/molecule/