平成20年度採択分 平成23年4月20日現在

複合極限場原子間力顕微鏡を用いた絶縁体表面での 力学的な原子分子操作法の開発 Investigation of mechanical manipulation of atoms and Molecules on insulator surface with extreme field atomic force microscopy 菅原 康弘 (SUGAWARA YASUHIRO) 大阪大学・大学院工学研究科・教授

研究の概要

原子や分子を操作し、新ナノ物質を思い通りに構築するためには、ナノスケールでの物質の自
然法則を解明し、これを実用技術に発展させる基礎研究が不可欠である。本研究は、複合極限
場(極低温、強磁場、超高真空)原子間力顕微鏡を駆使して、絶縁体表面上で原子や分子を力
学的に操作する技術を確立し、ナノ構造体の新規な物性を探索することを目的とする。
研 究 分 野:複合振領域
科研費の分科・細目:ナノ・マイクロ科学 ナノ構造科学
キー ワーー ド:複合極限場、原子間力顕微鏡、絶縁体表面、原子分子操作

1. 研究開始当初の背景

原子や分子をナノスケールの精度で操作 し、新ナノ物質を思い通りに作り上げるため には、ナノスケールでの物質の自然法則を解 明し、これを未来の実用技術に発展させる基 礎研究が不可欠である。原子分子操作に関す る研究は、これまで国内外とも、走査型トン ネル顕微鏡が使われてきた。しかし、電気的 方法に基づく走査型トンネル顕微鏡は、絶縁 体を扱えない、原子間力を測れないなどの限 界がある。他方、力学的手法に基づく原子間 力顕微鏡は、絶縁体も扱える、原子間力を測 れるなどの利点があり、次世代の原子分子操 作のツールとして期待されている

2. 研究の目的

本研究は、「複合極限場(極低温、強磁 場、超高真空)環境で動作する現有の非接 触原子間力顕微鏡を駆使して、絶縁体表面 上で原子や分子を力学的に操作する未踏 の技術を確立すると共に、ナノ構造体の新 規な物性を探索する」ことを目的とする。 具体的研究課題は、以下の4点である。

- 1)絶縁体表面上で力学的に原子分子操作 を行うための条件や機構を解明する。
- 2)原子分子操作によりナノ構造体を構築 し、その物性を解明する。
- 3) 強磁場下において磁性原子を力学的に 操作し、磁気相互作用を解明する。
- 4) 強磁場を利用して磁性原子からなるナ

ノ構造体の新規なスピン状態を探索する。

3. 研究の方法

平成20年度は、まず、原子分子操作を高 安定・高精度に行うため、先鋭で安定な顕微 鏡探針を実現する。次に、絶縁体表面での力 学的な原子分子操作の制御条件を解明する。 さらに、探針・試料間の3次元ポテンシャル エネルギー分布を測定できるようにし、原子 分子操作の機構を解明する。21年度以降は、 ナノ構造体の物性を高感度に測定できる静 電気力分光法を実現する。次に、実際に1次 元・2次元・3次元ナノ構造体を構築し、そ の物性を解明する。また、強磁場下で磁性原 子の操作し、磁気相互作用を解明する。さら に、ナノ構造体に現われる新規なスピン物性 を探索する。

<u>1)絶縁体表面での安定な力学的な原子操作 に成功</u>

絶縁体表面として酸化銅 Cu(110)-O 表面 を取り上げ、c(6x2)構造の最表面の Cu 原子 (Super-Cu 原子)を水平操作できるかどう か検討した。その結果、Cu 吸着探針の場合 には、探針が Super-Cu 原子の隣りの結合サ イトに近づくと、引力により Super-Cu 原子 が水平移動した。一方、O 吸着探針の場合に は、探針が Super-Cu 原子のサイトの真上に 来ると、斥力により Super-Cu 原子が水平移

^{4.} これまでの成果

動した。このように、表面の原子を水平操作 するために必要な力(引力あるいは斥力)が、 探針先端の原子種に大きく依存することを 初めて見出した。この結果は、力学的な原子 操作は、探針・表面間の化学的相互作用に強 く依存することを示唆している。

<u>2)フォース分光法の開発と力学的な原子操作の機構解明に成功</u>

原子操作の機構を解明するためには、探 針・試料間のポテンシャル分布を導出し、表 面原子の吸着サイトと最近接サイト間のエ ネルギー障壁の大きさを議論する必要があ る。そこで、カンチレバーの周波数シフトの 距離依存性を3次元的に測定し、ポテンシャ ル分布を導出した。その結果、Cu 吸着探針 の場合には、探針・試料間距離が減少すると、 Super-Cu 原子の隣の結合サイトの表面ポテ ンシャルが引力相互作用により大きく減少 し、拡散障壁が減少するため、Super-Cu 原 子が水平移動することが分かった。他方、0 吸着探針の場合には、探針・試料間距離が減 少すると、Super-Cu 原子サイトの表面ポテ ンシャルが斥力相互作用により大きく増加 し、拡散障壁が減少するため、Super-Cu 原 子が水平移動することが分かった。

<u>3)原子操作により絶縁体表面にナノ構造体を構築することに成功</u>

力学的な原子操作の制御条件と機構解明 の成果を生かして、実際に絶縁体表面上の原 子を力学的に操作して、ナノ構造体を構築す ることに成功した。今後は、ナノ構造体を構 成する原子の種類や原子の数、次元を変化さ せ、静電気力分光法を駆使して、電荷移動に 伴うポテンシャル変化(仕事関数の変化)や 電子状態の変化を明らかにする。

<u>4)強磁場下での磁性原子の操作に世界</u> <u>で初めて成功</u>

複合極限環境(極低温 4.2K、超高真空 2x10¹¹Torr、強磁場 9T)において、酸化銅 Cu(110)-O 表面で磁性原子である Co 原子を 水平方法ならびに垂直方法に操作すること に成功した。また、原子操作を用いて、1 次 元ならびに2次元のナノ構造体を構築するこ とにも成功した。なお、強磁場環境下で力学 的な原子操作に成功したのは、本研究が初め てである。

<u>5) 磁気交換相互作用を分離測定する方</u> 法を考案・実証

ナノ構造体の磁気的性質を理解するため に最も重要なものは、原子間の磁気交換相互 作用である。最近、申請者は、磁気交換力顕 微鏡において、この磁気交換相互作用だけを 測定する方法として、強磁性体をコートした 探針先端に変調されたマイクロ波を照射し、 探針の磁化状態を強磁性共鳴により変調し、 探針・試料間相互作用力の変調成分を抽出す るという着想に至った。鉄(Fe)コートされた 顕微鏡探針に周波数が約 1.7GHz のマイクロ 波を照射することにより、探針の磁化状態を 変調できることを実験的に検証することに 成功した。

5. 今後の計画

平成23年度は、まず、ナノ構造体の物性 を高感度に測定できる静電気力分光法を実 現する。次に、実際に1次元・2次元・3次 元ナノ構造体を構築し、その物性を解明する。 また、強磁場下で磁性原子の操作し、磁気相 互作用を解明する。平成24年度は、ナノ構 造体に現われる新規なスピン物性を探索す る。

- 6. これまでの発表論文等(受賞等も含む)
- "Force Mapping on NaCl(100)/Cu(111) Surface by Atomic Force Microscopy at 78 K", Y. J. Li, K.Tenjin, Y. Kinoshita, Z. Ma, L. Kou, Y. Naitoh, M. Kageshima, and <u>Y. Sugawara</u>, Ultramicroscopy, 2011. (In press).
- "Simultaneous observation of surface topography and elasticity at atomic scale by multifrequency frequency modulation atomic force microscopy", Y. Naitoh, Z. Ma, Y. J. Li, M. Kageshima and <u>Y. Sugawara</u>, J. Vac. Sci. Technol. B, **28**, 1210-1214, 2010.
- "Effect of Surface Stress around the S_A Step of Si(001) on the Dimer Structure Induced by Noncontact Atomic Force Microscopy at 5 K", Y. Naitoh, Y. J. Li, H. Nomura, M. Kageshima and <u>Y. Sugawara</u>, J. Phys. Soc. Jpn., **79**, 013601 (1-4), 2010.
- "The influence of Si cantilever tip with/without tungsten coating on NC-AFM imaging of Ge(001) surface", Y. Naitoh, Y. Kinoshita, Y. J. Li, M. Kageshima and <u>Y. Sugawara</u>, Nanotechnology, **20**, 264011 (1-7), 2009.
- "Atomic-Scale Imaging of B/Si(111) √3 x √3 Surface by Noncontact Atomic Force Microscopy", M. Kinoshita, Y. Naitoh, Y. J. Li, M. Kageshima and <u>Y.</u> <u>Sugawara</u>, Jpn. J. Appl. Phys., 47, 8218-8220, 2008.

ホームページ等 http://nanophysics.ap.eng.osaka-u.ac.jp/