平成19年度採択分平成22年4月12日現在

量子ドット・細線の量子コヒーレンスの検出と制御

Research on detection and manipulation of quantum coherence in quantum dots and wires

樽茶 清悟 (TARUCHA SEIGO)

東京大学・大学院工学系研究科・教授

研究の概要

量子細線、ドットなどの半導体ナノ構造における単一の量子(電荷、スピン)と相関を高精度に制御し、
電気伝導測定によって、量子コヒーレンス、スピン相関の物理の解明を目指す。具体的な研究項目は、
「単一スピンの量子コヒーレンス」、「近藤コヒーレンスと超伝導・強磁性の競合」、「観測による量子コヒー
レンスの破れ」である。
研 究 分 野:数物系科学
科研費の分科・細目:物理学·物性 I
キーワード:量子ドット、量子細線、量子コヒーレンス、超伝導接合、観測問題

1. 研究開始当初の背景

近年、半導体ナノ構造を用いて量子閉じ込め、 相互作用に起因する現象が観測されるように なった。この研究では構造の対称性や電子密 度、外部結合などの内部自由度を制御するこ とが功を奏してきた。一方で、個々の量子の 性質を積極的に応用しようとする「量子情報」 の研究が急速に進展している。その中で、我々 は量子細線、ドットの量子現象の制御と検出 の研究に関して先駆的な役割を果たしてきた。

2. 研究の目的

本研究は、上記研究を発展させて、単一の量 子(電荷、スピン)と相関を高精度に制御し、 その結果発現する現象を観測・解明、その延 長として量子情報の物理と技術に貢献する ことである。同様な研究の方向は次第に当該 分野の主流に成りつつあるが、その大半は量 子情報への応用に特化している。本研究は、 あくまで固体物理の視点で量子コヒーレン スと相関の物理を探求する。

3. 研究の方法

「単一スピンの量子コヒーレンス」では、量 子ドットの電子スピンのコヒーレンスと核 スピン結合、「近藤コヒーレンスと超伝導・強 磁性の競合」では超伝導体(強磁性体)を電 極とする InAs ドットの相関、「観測による量 子コヒーレンスの破れ」では結合量子細線の 電子伝導の位相制御と検出を行う。 4. これまでの成果 単一スピンの量子コヒーレンス:

我々が提案した電子スピン共鳴法を実証す るために必要な傾斜磁場を微小磁石で実現 し、1 電子スピン共鳴、2 重量子ドットの 2 個の電子の個別スピン共鳴、Rabi振動(量子 ビット操作に等価)、2 スピンの交換と片方の スピンの回転を組み合わせたユニバーサル SWAP実験に初めて成功した。その中で、量 子コヒーレンスを直接反映する物理量であ る、デフェージング時間、デコヒーレンス時 間を決定した。また、量子もつれに関係する スピン交換時間を決定するとともに、この時 間を電気的に制御することにより、SWAP時 間を制御できることを確認した。

近藤コヒーレンスと超伝導・強磁性競合:

2.46

 B_0 (T)

Right

2.50

(FA)

dot

2.42

磁石

図 1. (a) スピン共鳴の 原理、(b) 試料 (2 次元電子 中の2重ドット上に Co 磁 石)、(c) 2 個の電子のスピ ン共鳴。傾斜磁場中での電 子振動によりスピン共鳴 が起こる。実験では左右の ドットに対して独立なス ピン共鳴電流を観測。 超伝導電極を取り付けた InAs 量子ドットで は、サイドゲート法によりトンネル結合を制 御して(図2左)、電子数を一定にしたまま近 藤効果を変えながら超伝導電流の増大と抑 制を系統的に測定し、超伝導と近藤コヒーレ ンスの競合を実験的に詳細に調べることに 世界で始めて成功した(図2右)。

また片側を常伝導金属とした複合電極構造 では、超伝導/InAs 量子ドット界面で形成さ れるいわゆるアンドレーエフ束縛状態に依 頼する信号を電気伝導で検出することに成 功した。アンドレーエフ束縛状態の検出は、 今後、超伝導/InAs ドット界面でのクーパー 対伝導の本質的な解明に重要である。

その他、InAs ドットにおいてスピン軌道相互 作用の定量的評価と、量子ドットとしては世 界で初めて電気的制御に成功している。

図 2. (a) 試料写真。(b) 奇数電子領域で電流駆動 4 端 子法で測定した臨界電流(I_{sw})のサイドゲート電圧依存 性。挿入図は相関パラメータ k_BT_K/Δと I_{sw}の関係。

観測による量子コヒーレンスの破れ:

電荷コヒーレンスの観測による影響を調べ るために、独自に干渉計を設計、作成し、そ のデコヒーレンスについて調べた。この干渉 計は、量子細線を並行に配した結合量子細線 とアハロノフ-ボームリングとを組み合わせ たもので、"結合細線を伝播する電子がどち らの細線中に存在するか"で定義される量子 ビットを制御するように設計された。また、 この干渉計は、非断熱的な状態変化によって 時間反転対称性が破れている点に特徴があ り、外部電極による境界条件(Onsager の法 則)や外部電極の電圧雑音の影響を受けない という際立った特性を示した。この量子ビッ トの制御を通して、伝導電子が得る位相の測 定を行うことに成功すると共に、干渉計の内 在的なデコヒーレンスが実は非常に小さい ことを示した。

5. 今後の計画

量子コヒーレンス: (1)量子もつれを用いた 量子アルゴリズムの実証とデコヒーレンス 解明、(2)3重量子ドットのスピン状態の検出、 (3)電子スピン-核スピン結合のダイナミク スにおける核種依存性の解明と核スピン環 境揺らぎ解消法の開発。 近藤効果・超伝導・強磁性:(1)超伝導量子干 渉計による位相測定、(2)近藤効果とスピン 軌道相互作用の関係の定量化と電場誘起電 子スピン共鳴の実現。

コヒーレンスの破れ:結合量子細線とABリン グ複合デバイスに関して、(1)表面弾性波によ る1電子飛行量子ビットの実現、(2)観測チャネ ル導入によるコヒーレンスへの影響検出、(3) ドット導入による近藤位相検出。

6. これまでの発表論文等

[1] R.S. Deacon, Y. Tanaka, <u>A. Oiwa</u>, R. Sakano, K. Yoshida, K. Shibata, K. Hirakawa, and <u>S. Tarucha</u> Tunneling Spectroscopy of Andreev Energy Levels in a Quantum Dot Coupled to a Superconductor, *Phys. Rev. Lett.* **104**, 076805-076808 (2010).

[2] R.S. Deacon, Y. Tanaka, <u>A. Oiwa</u>, R. Sakano, K. Yoshida, K. Shibata, K. Hirakawa, and <u>S. Taruch</u>, "Kondo-enhanced Andreev transport in single self-assembled InAs quantum dots contacted with normal and superconducting leads", *Phys. Rev. B* **81**, 121308-121311(R) (2010).

[3] T. Kodera, K. Ono, Y. Kitamura, Y. Tokura, Y. Arakawa, and <u>S. Tarucha</u>, "Quantitative estimation of exchange interaction energy using two-electron vertical double quantum dots", *Phys. Rev. Lett.* **102**, 156802-156805 (2009).

[4] M. Pioro-Ladriere, T. Obata, Y. Tokura, Y-S. Shin, T. Kubo, K. Yoshida, T. Taniyama, and <u>S. Tarucha</u>, "Electrically driven single-electron spin resonance in a slanting Zeeman field", *Nat. Phys.* **4**, 776-779 (2008).

[5] J. Baugh, Y. Kitamura, K. Ono, and <u>S.</u> <u>Tarucha</u>, "Large nuclear Overhauser fields detected in vertically coupled double quantum dots", *Phys. Rev. Lett.* 99, 096804-096807 (2007).

[6] Y. Zhang, L. DiCarlo, D.T. McClure, <u>M.</u> <u>Yamamoto, S. Tarucha</u>, C.M. Marcus, M.P. Hanson, and A.C. Gossard, "Noise correlations in a coulomb-blockaded quantum dot", Phys. Rev. Lett. 99, 036603-036606 (2007).

[7]<u>樽茶</u>、第4回江崎玲於奈賞 「人工原子・ 分子の実現と量子コンピューターへの挑戦」 (2007.11).

[8] 樽茶、応用物理学会フェロー(2008.8)

ホームページ等 http://www.meso.t.u-tokyo.ac.jp/