Principal Re	searcher	Koich	iro Asahi				Number	of	3
							Reserc		-
Research Institutio		Professor, Graduate School of Science and							Meguro,
		Engineering, Tokyo Institute of Technology					Instit		Tokyo
Title of	Ultrahigh-Sensitivity Search for an Electric Dipole Moment of a ¹²⁹ Xe atom by Means of								
Project	Nuclear Spin Maser with Artificial Feedback								
Abstract of	Non-zero value of a permanent electric dipole moment (EDM) can occur only if the								
Research	time-reversal invariance is violated, and thus provides an important probe for theories which								
Project	describe the world of elementary particles and fields. The project is aimed at a search for a								
	permanent electric dipole moment (EDM) of ¹²⁹ Xe atom in a range down to two orders of								
	magnitude lower than the present experimental limit $ d ^{(129}Xe) < 4 \times 10^{-27}$ e·cm, the region of								
	d where the presently most promising theories predict.								
	An EDM is measured through a frequency change which would occur in the precession of								
	a ¹²⁹ Xe nuclear spin when the direction of an electric field is reversed. The keys to a high								
	sensitivity detection of an EDM therefore are: i) a long lasting time of the spin precession,								
	and ii) a high precision of the magnetic field monitoring. We will meet these requirements								
	by incorporating a nuclear spin maser of new type, which we have recently succeeded in								
	putting into operation by introducing an artificial feedback mechanism. The maser of this								
	type enables a self-sustained precession of 129 Xe spins at fields as low as ~10 mG, and thus								
	allows a high-precision field monitoring by means of the non-linear magneto-optic effect.								
	By this experiment, we thus expect that the presence of physics beyond the standard								
	model may be established if a finite $ d $ value is found, or some limit would be set upon								
	theories proposed to extend the standard model, if an upper limit to $ d $ is obtained.								
References	1) "Nuclear Spin Maser with an Artificial Feedback Mechanism", H. Yoshimi, K. Asahi,								
	K. Sakai, M. Tsuda, K. Yogo, H. Ogawa, T. Suzuki, and M. Nagakura, Phys. Lett. A 304,								
	13-20 (2002).								
	2) "Measurement of parity-nonconserving rotation of neutron spin in the 0.734-eV p-wave								
	resonance of ¹³⁹ La", T. Haseyama, K. Asahi, J.D. Bowman et al, Phys. Lett. B 534 (2002)								
	39-44.								
Term of Project	Fiscal yea	ars 2003	-2007. (5ye	ars)					
Budget	FY200	03	FY2004	FY200)5	FY2000	5	FY2007	TOTAL
Allocation	21	,500	17,200	13	,700	14,	400	9,200	76,000
(in thousand of yen)									