Principal Reso	earcher Shigel	nisa HIROSE				Numb	er of R	l e s	3		
· · · · · · · · · · · · · · · · · · ·						earc			-		
Research Insti	tution Profe	ssor Denar	tment (of B	iological			Tns	Midori-k		
				-				Yokohama			
Title of Pr Molecular characterization of chloride cells and their mechanism of											
5	differentiation										
	The chloride cells are mainly located in the gill and involved in osmoregulation of										
	fish. Reflecting their extraordinary power of ion transport, chloride cells are rich										
ject	in mitochondria and Na^{+}, K^{+} -ATPase and their surface areas are tremendously										
	increased by extensive invaginations of the basolateral membrane. By exploiting										
	these unique properties of chloride cells, we identified a K channel that is considered to be coupled with Na ⁺ ,K ⁺ -ATPase, which has been a long-standing challenge for physiologists. We further identified a novel family of proteins that exhibit low sequence similarity but share the same membrane topology with the										
	K channel an	nnel and found that they are key regulators of the subcellular membrane									
	trafficking.	e are also characterizing the chloride cells of a fish species (the									
Osorezan dace) that lives and grows in a pH 3.5 lake. The molecular mechan										sm	
	underlying the acid adaptation will be clarified by identifying molecule associated with gross morphological and functional changes of chloride cells see										
when the Osorezan dace were exposed to acidic conditions.											
References	1) Mistry, A. C., Honda, S., Hirata, T., Kato, A., and Hirose, S. (2001) Eel urea										
	transporter is localized to chloride cells and is salinity-dependent. <i>Am. J. Physiol,</i> 281 , R1594R1604.										
 2) Nakamura, N., Suzuki, Y., Ikeda, Y., Notoya, M., and Hirose, S. (24) Complex structure and regulation of expression of the rat gene for inverse rectifier potassium channel Kir7.1. <i>J. Biol. Chem.</i> 275, 2827628284. 3) Ookata, K., Tojo, A., Suzuki, Y., Nakamura, N., Kimura, K., Wilson, C. B., Hirose, S. (2000) Localization of inward rectifier potassium channel Kir7.1 in basal membrane of distal nephron. <i>J. Am. Soc. Nephrol.</i> 11, 19871994. 										00)	
										ard	
										nd	
										the	
	Fiscal years 2002-2006 (5 years)										
Budget Alloc	FY2002	FY2003	FY200)4	FY2005	5	FY200	6	Total		
ation											
(in thousand of yen)	20,100	17,200	13	,200	17	200	15	,500	87,2	200	