| . <u>/H ////</u> UUL/                                 | ログラム」(平成20年度採択拠点)事                                                          | 未和朱牧古書            |                          | 概要                                                  |  |  |  |
|-------------------------------------------------------|-----------------------------------------------------------------------------|-------------------|--------------------------|-----------------------------------------------------|--|--|--|
| 機関名                                                   | 北海道大学                                                                       | 機関番号              | 10101 拠点番号               | F01                                                 |  |  |  |
| 1.機関の代表者                                              | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                     | izo               |                          |                                                     |  |  |  |
| (学長)                                                  | (氏名) 山口 佳                                                                   | Ξ                 |                          |                                                     |  |  |  |
| 2. 申請分野<br>(該当するものにO印)                                | F〈医学系〉 G〈数学、物理学、地球科学〉                                                       | H<機械、土木、建築、そ      | の他工学〉 I <社会科学> J         | <学際、複合、新領域>                                         |  |  |  |
| 3. 拠点のプログラム名称                                         | 人獣共通感染症国際共同教                                                                |                   |                          |                                                     |  |  |  |
| (英訳名)                                                 | (Establishment of International Collaboration Centers for Zoonosis Control) |                   |                          |                                                     |  |  |  |
| 研究分野及びキーワード                                           | 〈研究野: 基礎医学〉(人獣共通感染症)(宿主域)(病原性)(Zoonosis Control Doctor)(国際共同教育研究)           |                   |                          |                                                     |  |  |  |
| 4. 専攻等名                                               | 獣医学研究科・ <u>獣医学専攻</u> 、人獣共通感染症リサーチセンター、医学研究科・医学専攻、遺伝子病制御研究所                  |                   |                          |                                                     |  |  |  |
| り. 埋携先機関名<br>(他の大学等と連携した取組の場合)                        | 5 . 連携先機関名         (他の大学等と連携した取組の場合)                                        |                   |                          |                                                     |  |  |  |
| 6. 事業推進担                                              |                                                                             |                   |                          |                                                     |  |  |  |
| ※他の大学                                                 | 等と連携した取組の場合:拠点<br>                                                          |                   |                          |                                                     |  |  |  |
| ふりがなくローマミ 氏 名                                         | 所属部局(専攻等)・職名                                                                | 現在の専門<br>学 位      | 役 割 :<br>(事業実施期間中の拠点形成   | 分 担<br>計画における分担事項)                                  |  |  |  |
| (拠点リーデー)<br>喜田 宏                                      | 獣医学研究科(獣医学)・特任教授                                                            | 病原微生物学<br>獣医学博士   | 全体統括、微生物の生態およ            | び感染予防の研究                                            |  |  |  |
| WaftWall 钟roaki<br>苅和 宏明                              | 獣医学研究科(獣医学)・准教授                                                             | 公衆衛生学<br>博士(獣医学)  | ウイルス感染症の疫学研究および          | び人材育成                                               |  |  |  |
| A g u i lakashi<br>安居院 高志<br>Katakura Ken             | 獣医学研究科(獣医学)・教授                                                              | 実験動物学<br>獣医学博士    | サブリーダー:人獣共通感染:とモデル動物開発   | 症制圧のための人材育成                                         |  |  |  |
| 片倉 賢 Tamashiro Hidehiko                               | 獣医学研究科(獣医学)・教授                                                              | 寄生虫学<br>医学博士      | 寄生虫感染症対策および人材            | 育成                                                  |  |  |  |
| 玉城 英彦<br>Ariga ladashi                                | 医学研究科(医学)・特任教授                                                              | 予防医学<br>医学博士      | 国際ネットワーク構築および            | 人材育成                                                |  |  |  |
| 有賀 正<br>Takada Ayato                                  | 医学研究科(医学)・教授                                                                | 小児科学<br>医学博士      | 人獣共通感染症医療および人            | 材育成                                                 |  |  |  |
| 高田 礼人<br>Isubota Ioshio                               | 人獣共通感染症リサーチセンター・教                                                           |                   | サブリーダー 人獣共通感染症制圧のための:    | 疫学研究                                                |  |  |  |
| 坪田 敏男<br>Arikawa Jiro                                 | 獣医学研究科(獣医学)・教授                                                              | 野生動物医学<br>  獣医学博士 | 野生動物生態と感染症の研究            |                                                     |  |  |  |
| 有川 二郎<br>Ohashi Kazuhiko                              | 医学研究科(医学)・教授                                                                | ウイルス学 獣医学博士       | ウイルス感染症の疫学研究             |                                                     |  |  |  |
| 大橋 和彦                                                 | 獣医学研究科(獣医学)・教授                                                              | 感染免疫学<br>PhD      | 鳥由来感染症の疫学研究              |                                                     |  |  |  |
| 伊藤 公人 Horiuchi Motohiro                               | 人獣共通感染症リサーチセンター・冶                                                           | 工子 博士             | 人獣共通感染症研究のためのIT          | 基盤の構築                                               |  |  |  |
| 堀 内 基 広                                               | 獣医学研究科(獣医学)・教授                                                              | プリオン学 獣医学博士       | サブリーダー<br>人獣共通感染症の免疫・病態: | 研究                                                  |  |  |  |
| 澤 洋文                                                  | 人獣共通感染症リサーチセンター・着                                                           | 対授 病理学<br>医学博士    | ウイルスの病原性発現の分子            | 基盤の解明                                               |  |  |  |
| Umemura lakashi<br>梅村 孝司                              | 獣医学研究科(獣医学)・特任教授                                                            | 病理学<br>獣医学博士      | 病原体の神経向性機構およびの解明         | 感染症に関する免疫応答                                         |  |  |  |
| Suzuki Yasuhiko<br>鈴木 定彦                              | 人獣共通感染症リサーチセンター・者                                                           | 始担                | サブリーダー<br>人獣共通感染症の診断・治療  | 法の開発基盤                                              |  |  |  |
| Noguchi Masayuki<br>野口 昌幸                             | 遺伝子病制御研究所・教授                                                                | 分子生物学<br>医学博士     | 細胞内シグナルの解明と治療            | への応用                                                |  |  |  |
| Miyazaki ladaaki<br>宮崎 忠昭                             | 遺伝子病制御研究所・特任教授                                                              | 免疫学<br>医学博士       | ウイルス感染症の診断法と治            | 療薬の開発                                               |  |  |  |
| Higashi Hideaki<br>東 秀明                               | 人獣共通感染症リサーチセンター・者                                                           | 始授 細胞生物学 薬学博士     | 病原体および宿主因子の分子権           | 精造解析と治療薬の開発<br>・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ |  |  |  |
| H22 <sup>年3月31日辞選</sup><br>Takashima I k u o<br>高島 郁夫 | 獣医学研究科(獣医学)・教授                                                              | ウイルス学<br>PhD      | ウイルス感染症の疫学研究およ           | び人材育成                                               |  |  |  |
| H22年10月31日辞温<br>Iwabuchi Kazuya<br>岩渕 和也              | 遺伝子病制御研究所・准教授                                                               | 免疫学<br>医学博士       | 感染症に対する免疫応答の解            | 明                                                   |  |  |  |
| Bugimoto Chihiro<br>杉本 千尋                             | 人獣共通感染症リサーチセンター・着                                                           | 放授 原虫病学 獣医学博士     | サブリーダー人獣共通感染症制圧のための      | 人材育成                                                |  |  |  |
| H24年3月31日辞選<br>Inaba Mutsumi<br>稲葉 睦                  | 獣医学研究科(獣医学)・教授                                                              | 分子生物学<br>獣医学博士    | 感染と発症に関わる宿主細胞            | 因子の解明                                               |  |  |  |

| 機関(連携先機関)名 | 北海道大学                |      |  |
|------------|----------------------|------|--|
| 拠点のプログラム名称 | 人獣共通感染症国際共同教育研究拠点の創成 |      |  |
| 中核となる専攻等名  | 獣医学研究科獣医学専攻          |      |  |
| 事業推進担当者    | (拠点リーダー) 喜田 宏・特任教授   | 外17名 |  |

## [拠点形成の目的]

インフルエンザ、SARS、エボラ出血熱、ウエストナイル熱、プリオン病、結核、狂犬病等の人獣共通感染症が世界各地で発生し、人類社会を脅かしている。これらの病因は、野生動物に寄生して自然界に存続してきた微生物である。したがって、人獣共通感染症を克服するためには、病原体の自然宿主と伝播経路を解明し、もって感染症の発生予測、予防と制圧に資する研究を推進するとともに、斯かる新分野に貢献できる人材を育成する必要がある。北海道大学は、人獣共通感染症に関する研究・教育を抜本的に強化するために、平成15-19年度に21世紀COEプログラム「人獣共通感染症制圧のための研究開発」を推進し、平成17年度に人獣共通感染症リサーチセンターを設立した。本センターは、平成22年4月に文部科学大臣によって、「共同利用・共同研究拠点」として認定された。

本グローバルCOEプログラムの目的は、北海道大学がこれまでに構築した国際共同研究ネットワークおよび研究・教育の基盤を活用し、人獣共通感染症の教育・研究を加速するとともに、国内外に感染症対策の科学的基盤を提供すること、人獣共通感染症対策の立案と実施に貢献できる専門家 "Zoonosis Control Expert"を育成すること、ならびに、人獣共通感染症の国際共同教育研究拠点、"International Collaboration Centers for Zoonosis Control" を創成することである。

## [拠点形成計画及び達成状況の概要]

以下のように、本拠点形成計画すべての目標を達成した。

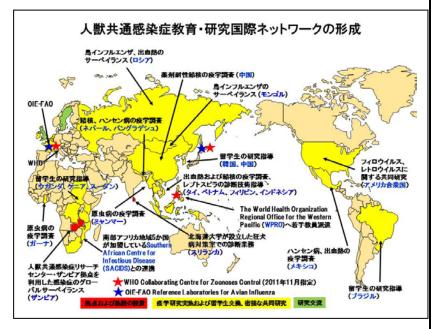
# 1. 人材育成

- ①Zoonosis Control Expertの育成:平成21年度から Zoonosis Control Expert (ZCE) 認定プログラムを実施し、85名(日本人33名、外国人52名)の博士研究員、大学院生、留学生および研修生がこれを受講した。定期的に審査会を実施し、計25名をZCE として認定した。これらの ZCE は現在世界9カ国で活躍している。ZCE 認定プログラムは、博士課程教育リーディングプログラムで引き続き実施している。
- ②大学院生および若手研究者の海外活動支援・国際感覚の涵養:海外共同研究拠点等に大学院学生および若手研究者を派遣し、疫学研究の実践教育と国際感覚の涵養を図った(延べ99人、16カ国)。若手研究者に国際シンポジウムを企画・立案・運営を担当させ毎年開催した(アジア、アフリカ、北米、ヨーロッパとオセアニアからの招聘者総数47名、日本側からの参加者総数507名)。また、国際学会への参加を援助した(延べ35名)。
- ③ 外国人大学院学生教育の強化:「国費研究留学生の優先配置を行う特別プログラム」と連携し、外国人の大学院博士課程への入学受入体制を強化した。
- ④ 大学院学生の研究計画立案・遂行能力の涵養:延べ75名の博士課程大学院学生をRAとして雇用し、研究課題の提案・実施を指導するとともに経済支援を行った。
- ⑤ Zoonosis Controlに与る海外研究者・技術者の教育:海外の研究者・技術者に対し、各年度4-6ヶ月間にわたる"Advanced Training Course for Zoonosis Control"を開講し、人獣共通感染症の発生と流行の防止対策を指導した(アジア10カ国、アフリカ3カ国、中米1カ国、ヨーロッパ1カ国から総数30名)。本コース受講者の内5名が獣医学研究科大学院に進学し、博士課程教育の国際化に寄与した。

#### 2. 研究活動

- ①人獣共通感染症病原体の自然界における存続メカニズムの解明:国際共同研究ネットワークを活用して インフルエンザ等の人獣共通感染症のグローバルサーベイランスを展開し、病原微生物の生態に関する 新たな知見を得た。
- ② 病原体の宿主域および病原性の解明:ウイルス、細菌、原虫と寄生虫およびプリオンの宿主域と組織向性、病原性発現機構についての基礎的知見を得た。
- ③ 診断法および予防・治療法の開発:感染症の診断に用いる簡便、安価かつ高感度の診断法を開発した。また、予防法ならびに治療法開発の基盤知見を得た。
- ④ バイオインフォマティクスの活用:生命科学と情報科学を融合し、人獣共通感染症の発生・流行を予測し、先回り対策を立案するための研究基盤を構築した。

# 3. 国際貢献


世界保健機関(WHO)、国際連合食糧農業機関(FAO)および国際獣疫事務局(OIE)と連携を図り、インフルエンザ等の人獣共通感染症の対策立案に貢献した。

当拠点の教育研究活動が認められ、平成23年11月に人獣共通感染症リサーチセンターは、WHOに「人 獣共通感染症対策研究協力センター」として指定された。

#### 6-1. 国際的に卓越した拠点形成としての成果

国際的に卓越した教育研究拠点の形成という観点に照らしてアピールできる成果について具体的かつ明確、簡潔に記入してください。

- ① 人獣共通感染症リサーチセンターは、平成23年に世界に類を見ない「人獣共通感染症対策研究協力センター」としてWHOに指定された。また、WHO西太平洋地域事務所の危機対策部門に若手教員を派遣し、人獣共通感染症対策に従事させている。
- ② 多くのプログラム(特色ある大学教育GP、国費外国人留学生の優先配置、若手研究者インターナショナル・トレーニング、JICA集団研修人獣共通感染症対策)を活用し、人獣共通感染症対策専門家 (Zoonosis Control Expert)認定プログラムを開設し、平成24年までに、外国人11名を含む25名を Zoonosis Control Expertとして世界9カ国に輩出し、国際社会における感染症対策に貢献させた。
- ③ 世界各国(15ヵ国)の関連機関から30名の研修生を受け入れ、トレーニングコースを受講させ、感染症対策に関する知識・技術の普及に努めた。
- ④ 本拠点のリーダーである喜田は、農林水産省家禽疾病委員会委員長として国内で3度発生した高病原性鳥インフルエンザを指揮して悉く制圧し、国際社会ではWHO、OIE、FAOの一体化を図り、人獣共通感染症対策を推進。さらにOIE 鳥インフルエンザ ワールドレファレンスラボラトリーのダイレクター、OIE科学委員、OIE・FAOインフルエンザネットワーク(OFFLU)拠点メンバーとして、人獣共通感染症対策のリーダーシップを発揮している。
- ⑤ 地球上のすべての亜型の1,400 株余から成る、世界で唯一のインフルエンザウイルスライブラリーを保有。情報をデータベース化しwebsiteに公開し、12カ国36試験研究機関にウイルス株、遺伝子および標準抗血清を分与。さらに世界で唯一の全16亜型HAに対するモノクローナル抗体パネル(約500クローン)を作出し、外部研究機関に供与している。
- ⑥ 国際共同研究により構築した27ヶ国との人獣共通感染症教育・研究ネットワーク、および南部アフリカにおいて我が国が設置・運営する唯一の感染症研究拠点であるザンビア拠点を活用し、国際社会における人獣共通感染症の研究・教育を牽引している。
- ⑦ バイオインフォマティクスを活用 し、将来流行するインフルエン ザウイルスのヘマグルチニンの アミノ酸配列を予測し、先回り対 策を推進。当該分野では平成 20年以降、論文数、被引用回 数世界一位。
- ⑧ 人獣共通感染症リサーチセンターは、人獣共通感染症の克服に資する研究・教育を総合的に推進する機関として世界初、かつトップ。
- ① 人獣共通感染症リサーチセンターは、H17年に設立されて以来、355編の論文を国際学術雑誌(Nature、Nat Med、Proc Natl



Acad USA等)に発表し、総被引用回数は4,100回を超えている。研究者一人当たりの論文数、被引用回数ともにアメリカ疾病予防センター(CDC)を上回っている。

⑩ 新規遺伝子増幅法の有用性に着目し、細菌感染症、ウイルス性感染症、原虫感染症の診断法を世界で初めて開発し、途上国における普及に努めている。本研究関連の論文は質・量ともに世界一。この結核遺伝子診断法のコストは、WHOが推奨している遺伝子診断法の1/60を実現したので、世界各国から照会、デモンストレーションと研修の依頼が殺到している。

# 「グローバルCOEプログラム」(平成20年度採択拠点)事後評価結果

| 機関名                   | 北海道                  | 1大学            | 拠点番号 | F01    |  |  |
|-----------------------|----------------------|----------------|------|--------|--|--|
| 申請分野                  | 医学系                  |                |      |        |  |  |
| 拠点プログラム名称             | 人獣共通感染症国際共同教育研究拠点の創成 |                |      |        |  |  |
| 中核となる専攻等名 獣医学研究科獣医学専攻 |                      |                |      |        |  |  |
| 事業推進担当者               |                      | (拠点リーダー名) 喜田 宏 |      | 外 17 名 |  |  |

# ◇グローバルCOEプログラム委員会における評価(公表用)

#### (総括評価)

設定された目的は十分達成された。

#### (コメント)

大学の将来構想と組織的な支援については、「国際的通用性を持つ柔軟な大学院課程を構築する」との将来構想と連動させグローバルCOEプログラム支援体制を構築し拠点形成を推進した。人獣共通感染症リサーチセンターに、バイオインフォマティクス部門および感染・免疫部門を新設し、組織を拡充させるなど、全学的支援体制はよく機能したと思われる。

拠点形成全体については、インフルエンザウイルスの感染と予防対策における研究拠点、その人材育成拠点として整備された。WHO(世界保健機関)による人獣共通感染症リサーチセンターの「人獣共通感染症対策研究協力センター」としての指定、アジア・太平洋地域10か国のWHO、FAO(国際連合食糧農業機関)、OIE(国際獣疫事務局)の共同研究センター代表者が参画する人獣共通感染症フォーラムの主催、ザンビア大学との交流協定の締結など、拠点形成は着実に進展した。しかし一方で、インフルエンザ以外の感染症での拠点形成、国内の連携については不透明である。

人材育成面では、感染症現場で活躍する研究者人材を目指し、育成プログラム、研究者のキャリアパス支援組織、国際研究拠点との連携・共同などを通して、ユニークなスペシャリスト養成に成果を挙げたと思われる。Zoonosis Control Expert (人獣共通感染症対策の立案と実施に貢献できる専門家)育成プログラムは斬新で、参加者85名中、現在までに25名の「国際的な助言と指導が出来るリーダー」を育成したと評価される。しかしこの資格の認知度は曖昧なままである。今後、認定者に活躍の機会が与えられることを期待したい。

研究活動面については、インフルエンザウイルスの解析、ワクチン開発では、質の高い基礎研究をさらに進め、全ての組み合わせである144の遺伝子型ウイルスライブラリーを整備したことは世界に類を見ない成果である。また、いち早く危険度の高いウイルス株の検出を行い、国の感染症対策に大きく貢献したことは、拠点の機能として高く評価できる。しかし、他の感染症については、どのようなインパクトある成果を挙げたのか、どのように連携したか曖昧である。

今後の展望については、共同利用・共同研究拠点として認定され、大学の支援による「人獣 共通感染症リサーチセンター」の強化など、将来に向けて対策が進められた。人獣共通感染症 は今後益々重要性を増すと思われるため、本拠点の発展と共に、次世代拠点リーダーの育成な どを期待したい。