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Introduction

Our brain has a remarkable ability to adapt to the sensory environment. For example,
in the cocktail party problem, we can pick up voices in front of us while ignoring other
conversations as background noise. In our everyday life, we both consciously and
subconsciously select what we hear from the multitude of sounds in any environment and
segregate them into meaningful foreground sounds and unimportant background noise. If we
pay attention, however, we can listen to other conversations that were initially considered in the
background.

Thalamus is the last subcortical station and receives dense feedback projections from
the cortex. Auditory cortex and thalamus are thought to extract sound information independent
from background noise and to play a key role in transforming sound information to a more
robust representation that is less dependent on details of the acoustic stimulus and the
background conditions. The relationship of such a sound representation to adaptation and
attention is, however, not yet well understood.

In this project, I examined neural activities in two rat core auditory cortical fields,
primary auditory cortex (Al) and ventral auditory field (VAF), which receive distinct thalamic
inputs. Then, I developed an experimental setup to measure neural activities in behaving animal
to study the attentional modulation in signal-in-noise processing.



Method and Result

Estimation of multi-dimensional receptive fields

The structure of receptive fields for the neurons in lower-level stage of the auditory system tend
to show simple linear receptive fields, while higher-level neurons have increasingly nonlinear
receptive fields due to the increasing assembly of several filters and rectification of inputs at the
cellular level. For auditory responses, spectrotemporal receptive fields (STRFs) have typically
been estimated as a single filter, which is the average of stimulus envelopes that preceded a
spike (stimulus triggered average, STA, Fig. 1A). Capturing the complex aspects of central
sound processing, however, requires an expansion from traditional single filter measurements
of STRFs to more complex, multi-filter STRFs (mSTRFs). Use of a multi-filter linear-nonlinear
approach is essential for better neural systems analysis. I obtained two STRFs per neuron (the
first and second maximally informative dimensions, MID1 and MID2, Fig. 1B-C), using mutual
information, a quantitative metric to estimate the dependence of a response on the evoking
stimulus, based on information theory 1

Functional differences of two cortical fields

I investigated temporal and spectral modulation properties and the cooperativity of
multidimensional filters in two core rat auditory cortical fields, A1 and VAF, which are the two
first cortical fields receiving thalamic inputs in parallel along the posterior-to-anterior
dimension (Fig. 1D). I showed that the spike information conveyed by the first STRF (MID1)
was higher in VAF than in Al and the additional second STRF (MID2) contribution and
nonlinear cooperativity of these two filters (MID1 and MID2) were larger for Al (Fig. 1E).
Those findings support that there are potential biological meaningful differences of sound
encoding in the two cortical fields, however, it remains elusive what is the exact role of the
second STRF.
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Developmental plasticity effect on multi-dimensional RFs

In order to investigate how the environmental sound statistics affects STRF development, I
raised rat pups in a moderately-noisy spectrotemporal modulated noise during their auditory
critical period 7. T showed that the spectrotemporal modulation preferences of the STA and
MID1 of cortical neurons can be altered by the noise exposure and shifted away from the noise
statistics to increase signal-in-noise ratio (SNR). In other words, the shift reduces neural
responses to noise and thus enables animals to more effectively extract foreground sound from
background noise as proposed in the efficient coding principles. Here I further demonstrated
that the spectrotemporal modulation preferences of MID2 can be shifted away from the exposed
noise parameters in both of the cortical fields, A1 and VAF, and in a similar direction as STA
or MID1 (Fig. 2) *®. In addition, the information values captured by MID2 and the nonlinear
cooperativity of the two-filter model decreased particularly in A1 by the noise exposure. These
suggest that the second STRF (MID2) may contribute to signal-in-noise-processing but
potentially loses effectiveness in processing contextual stimulus effects.
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Figure 2. Noise-exposure modified ripple transfer function preferences of MID1 and MID2.

In this example, population ripple transfer functions for MID1 and MID2 were obtained for VAF neurons of
Control (C) and noise-exposed (LH) groups, respectively. Then, the differences of the population ripple transfer
functions between LH and C groups were computed for MID1 (A) and MID2 (B). Bold dashed boxes indicate the
dominant modulation ranges of the exposure noises. Color bar indicates the values of differences. Adopted from
Homma et al., 2021.

Correlation between behavioral performance and neural decoding accuracy

I established a vocalization-in-noise detection behavior paradigm using the Go/No-Go
paradigm, and I showed that the behavior performance was well reflected by
vocalization-in-noise decoding accuracy of auditory cortical neurons in anaesthetized animals
as determined by a nearest-neighbor linear decoder (Fig. 3) "
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Figure 3. Correlation between behavioral and neuronal vocalization-in-DMR performance.

(A) Behavioral sensitivity for vocalization-in-DMR detection and physiological decoding accuracy for each SNR
condition of vocalization-in-DMR task were correlated (Pearson correlation coefficient, R = 0.78, p < 0.0001). (B)
Behavioral and decoding thresholds were highly correlated (R = 0.70, p = 0.01). Adopted from Homma et al.,
2020.



Measuring neural activities in awake behaving animal

Then, to examine top-down effect of attentive listening, I have developed a custom-built
behavioral training platform in a soundproof chamber, where a head-posted animal runs on a
treadmill listening to sound stimuli while an acute multi-contact electrode is inserted in the
brain and spiking activities are monitored (Fig. 4). I prepared four computers for presenting
sound stimuli, obtaining neural activities, regulating the behavioral task, and tracking animal’s
running speed on the treadmill. The four computers are controlled by custom-written
Matlab/Python scripts and communicate each other via Internet communicating protocols with
very short latency. This was necessary to obtain neural and behavioral data linked to exact
stimulus presentation timing. The behavioral task asks animals to detect rat vocalizations from
spectrotemporally modulated noise while randomly changing their SNRs.
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Figure 4. Experimental design and examples of multi-dimensional STRFs in awake rat.

Headposted rat was placed on the treadmill, and sound was played from the speaker mounted 15 cm away from the
midpoint of the two ears. An acute multichannel recording probe was inserted in the auditory cortex. The
magnified probe view indicates the positions of four example units, a-d. Spike waveforms, filter structures and
input-output functions (“nonlinearity””) for MID1 and MID2 are shown for each unit. Preliminary data.

Top-down modulation in attentive listening

Auditory scene analysis is achieved by bottom-up and top-down modulations. The bottom-up
adaptation allows us to extract information in an efficient coding manner that is guided by a
subconscious sensitivity to variations in stimulus statistics. Noise tolerant encoding appears
strongest in cortical neurons and is correlated with adaptation to stimulus statistics. Along the
auditory pathway, receptive fields shift from encoding simple sound attributes (such as tone
frequency, intensity, and sound source location) towards more mean-, contrast-, and noise
independent information. On the other hand, top-down modulation enables us to deliberately
and intentional select information via attention mechanisms or by inducing task-specific
learning adaptation.

Using the experimental setup that I developed to examine neural activities in behaving
animal, I am currently working on collecting and analyzing data to understand how cortical
activities are modulated by different internal states (e.g. anaesthetized, awake, attentive or
moving). I apply the two-filter model based on information theory *® and coordinated neuronal
ensembles * analyses. These approaches are expected to reveal nonlinear processing and
high-order synchronized activities related to active listening.



Concluding remarks

I characterized the functional differences and developmental plasticity changes of A1 and VAF
neurons using a two-filter receptive field model 7. Then, I developed a setup to obtain
neural spiking activities in behaving rat and investigate attentional modulations in a challenging
hearing condition. In addition, I collaborated in the characterization of coordinate neuronal
ensembles in auditory cortex and their relationship to the encoding by individual neurons . I
also wrote a review article introducing the anatomy and physiology of descending
corticothalamic feedback projections and discussing its potential roles in speech and music
processing *. After the end of the fellowship, I will stay in the host lab as a postdoctoral fellow
to complete these projects.
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