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(The state and results of my research
for the expected goal)

=& K (Yuta Takahashi)

1 Summary

My research project belongs to the area of philosophy, in particular philosophy of logic.
The main purposes of this research project are

(1) to formulate a proof-theoretic semantics based on linear logic, and

(2) to show that a proof system of linear logic is complete with respect to this proof-
theoretic semantics.

For these purposes, I adopted a mixed approach which consists of several theoretical frame-
works in philosophy, logic and computer science.

Below I first explain the background of my research project (§2). In particular, I will
provide brief explanations for proof-theoretic semantics, the completeness with respect to
proof-theoretic semantics, and linear logic. Next, I will describe the results in my research
project and mention a work in progress (§3).

2 Background

Proof-theoretic semantics, which was introduced by Dag Prawitz during the 1960s and 70s
(see e.g. [6, 7]), is a framework to explain the meanings of logical connectives such as “if
A then B”, “all x are F” and “there is a = being G. The characteristic of proof-theoretic
semantics is that it explains the meaning of a logical connective in terms of the inference
rules governing this connective, and these inference rules are formulated in the framework
of proof theory. Proof theory is an area of mathematical logic which investigates the
properties and structures of proofs by treating proofs themselves as mathematical objects
(in this sense, proof theory is a metamathematics). For example, a rule governing the
logical connective Conjunction A is formulated in proof theory as follows: let A and B be

two arbitrary propositions, then the introduction rule for A
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is an inference rule for the conjunction A A B, and this rule says that it is admissible to
infer A A B if both A and B are derived. According to proof-theoretic semantics, it is
this rule that gives the meaning of the conjunction A A B of A and B; in fact, this rule
captures the intended meaning of A A B, which states that A A B holds if both A and B
hold. Based on this idea, proof-theoretic semantics explains the meanings of more complex
propositions such as “For all z being F, there is a y being G such that the relation R(z,y)
holds”.

So far, the literature of proof-theoretic semantics has proposed several conditions such
as Harmony in order to explain when a collection of inference rules for a connective is valid.
Roughly speaking, Harmony requires that there is a balance between the introduction rule
for A above and the following elimination rules for A;
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such a balance can be indeed found between these inference rules. Moreover, one can
provide not only the conditions for counting as valid inference rules, but also the conditions
for counting as valid proofs: given a proof system formulated by means of proof theory,
proof-theoretic semantics explains when a proof in this system is a valid one.

Then, by showing the completeness with respect to proof-theoretic semantics, one can
verify that this semantics captures the proofs in a given proof system exactly. The com-
pleteness of a proof system S with respect to proof-theoretic semantics means that any
proof in S is valid in the sense of this semantics and vice versa. Hence, if one succeeds in
showing that a proof system S is complete with respect to proof-theoretic semantics, then
this semantics gives a characterisation of the proofs in S by means of the validity provided
by it.

On the other hand, linear logic is an area of mathematical logic which was developed
mainly in connection to theoretical computer science. Linear logic was introduced by Jean-
Yves Girard in the 80s ([2]), and one of its main ideas is the computation as interaction.
On the basis of this idea, the research on linear logic has given many insights into the
essence of programs including ones of functional programming and logic programming. In
proof theory of linear logic, proofs are considered to be programs (as in the so-called Curry-
Howard correspondence), and the computation as interaction appears as the transformation
of proofs.

The main idea behind my research project is to formulate a proof-theoretic semantics
based on linear logic and explain the validity of proofs by using this semantics, which
provides an account of the validity in terms of interaction or dialogue. This approach
stands in contrast with the approach by traditional proof-theoretic semantics because it
is the notion of monologue by an idealised mathematician that underlies the traditional
approach.

Then, if one succeeds in showing that a proof system S is complete with respect to
my proof-theoretic semantics, a characterisation of the proofs in .S in terms of interaction
is obtained. This is of conceptual interest, since the characterisation here has an interac-
tive feature which is distinct from traditional proof-theoretic semantics. Moreover, it was



shown recently by Thomas Piecha and Peter Schroeder-Heister ([5]) that the completeness
with respect to a standard proof-theoretic semantics cannot hold for the proof system of
intuitionistic logic, which is one of the main proof systems in mathematical logic. This
motivates the research on proof-theoretic semantics to formulate a new proof-theoretic se-
mantics and develop it so that the completeness holds for the proof system of intuitionistic
logic.

3 Results (Joint Work with Alberto Naibo)

In joint work with my host researcher Prof. Alberto Naibo, I formulated a linear-logical
variant of proof-theoretic semantics by using Computational Ludics, which was introduced
by Kazushige Terui in [10]. Computational Ludics is a computability- and complexity-
theoretic reformulation of Girard’s Ludics ([3]), and Ludics is one of the standard frame-
works in proof theory of linear logic. In particular, we focused on the notion of Harmony
in traditional proof-theoretic semantics, and reformulated this notion in Computational
Ludics: first, we decomposed the notion of Harmony into the inversion principle and the
recovery principle by following the preceding approaches in proof-theoretic semantics, and
then we reformulated these two principles in the framework of Computational Ludics. We
called this Ludics-counterpart of Harmony the harmony condition. In traditional proof-
theoretic semantics, Harmony is utilised for giving an account of the validity of inference
rules and proofs, and the harmony condition plays the same role in our proof-theoretic
semantics.

On the basis of this reformulation, we proved that the harmony condition is equivalent
to each of the two other conditions which are given in terms of the interactive nature of
Computational Ludics. This makes it explicit that the notion of validity in our proof-
theoretic semantics is based on interaction or dialogue: these two conditions connect our
notion of validity with a fruitful notion of interaction which is found in theoretical com-
puter science. Moreover, one of these two conditions is the internal completeness in the
Ludics framework, and this has the following two advantages. First, we conjecture that the
completeness of the linear fragment MALLP of polarised linear logic with respect to our
proof-theoretic semantics is easily obtained by restricting the more general completeness
result by Basaldella and Terui in [1] to our case.! The equivalence of the harmony condition
to the internal completeness allows to adapt the result in [1] to our proof-theoretic seman-
tics. Second, the internal completeness is a form of completeness which is proper to the
Ludics framework: there is no fundamental distinction between proofs and models. Since
the completeness with respect to traditional proof-theoretic semantics was an attempt to
formulate the notion of completeness of a proof system without model-theoretic means,
one can think of our harmony condition as a further development of this attempt.

The extended abstract on the work above was accepted for a contributed talk in Linear-
ity & TLLA 2020 (the second edition of the joint workshop of the International Workshop

'However, our research is still far from the goal of finding a proof-theoretic semantics in which the
completeness of intuitionistic logic holds.



on Linearity and the International Workshop on Trends in Linear Logic and its Appli-
cations) June 29-30, 2020, and I gave the online presentation.? After this workshop, the
extended abstract was revised as a full paper, and the full paper was submitted for the
post-proceedings of the workshop. The paper is currently under review.

The joint work above with Prof. Naibo can be described as an investigation of tradi-
tional proof-theoretic semantics from the viewpoint of computation, and I made such an
investigation also by a work in progress, which is another joint work with him. Specifi-
cally, we discussed the connective denoted by e, which was introduced by Stephen Read
(8, 9]), and explained the computational meaning of e. The inference rules for e satisfy
Harmony in traditional proof-theoretic semantics, but one can derive a contradiction from
these rules and so e is problematic from the logical point of view.> We argued that the
inference rules for e can simulate the fixed point operator in partial type theory, which was
investigated by e.g. Erik Palmgren ([4]). The inference rule for the fixed point operator
implies a contradiction as the inference rules of e do, while the literature on partial type
theory revealed several computational significance of this operator. By showing that the
inference rules for e can simulate the behaviour of the fixed point operator, we explained
that e is still computationally meaningful.

I presented this work at EXPRESS-THPST online workshop: Truth, proof and com-
munication, June 21-22, 2021.* Now I am preparing a full paper through correspondence
with Prof. Naibo.
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