


change and morality risk of postmenopausal population. Subjects/Methods: We used 

longitudinal weight history data of postmenopausal women from Women’s Health Initiative 

(WHI) for our analysis. The participants whose baseline BMI is above 18.5kg/m2 and who have 

reported at least 5 time points of BMI were included for the analysis. The participants whose 

BMI changed extreme (more than 20 units) in the study period were also excluded. We 

categorized BMI histories into five groups using growth mixture model (latent class linear mixed 

model), in which linear and quadratic terms of the time since the enrolment were considered as 

class-specific fixed effects. Subsequently we performed the survival analysis using cox 

proportional hazard model, in which baseline BMI categories (normal weight [18.5 to 25.0], 

overweight [25.0 to 30.0], class I obese [30.0 to 35.0] and class II obese [35.0 and above]) and 

weight trajectory groups and their interaction were used as main predictors. The model was 

adjusted by age groups (under 55, 55 to 60, 60 to 65, 65 to 70 and over 70) and race/ethnicity 

(White, Black and the others). Results: We classified BMI trajectory into 5 groups and named 

them as A) lose more weight (5 years weight change=-6.19 kg/m2; 95% CI=-6.63 to -5.76), B) 

lose weight (-1.97 kg/m2; -2.22 to -1.72), C) stable weight (0.21 kg/m2; -0.09 to 0.51), D) gain 

weight (2.1 kg/m2; 1.34 to 2.86) and E) gain more weight (5.36 kg/m2; 5.14 to 5.57). Using 

stable weight as a reference, we identified lose weight, lose more weight, gain more weight is 

statistically significantly associated with high mortality risk regardless of baseline BMI 

category. Conclusions: Losing weight and gaining more weight is associated with high 

mortality risk in postmenopausal women regardless of the baseline BMI. 

Although we could confirm taking into account BMI trajectory is important, the detected pattern is 

relatively simple. Also, I did not consider other health status (eg., blood pressure) or biomarker 

history. As a next step, I have to use AI to detect more flexible trajectory patterns. 

2. To test whether exclusion of extreme reporters of energy intake (the ‘Goldberg cutoffs’) 

reliably make results less biased in nutrition studies 

Energy intake is measured by various way. Two most commonly used method is self-report and 

doubly-labelled water (DLW) method. Each of these has inherent pros and cons. Especially, self-

report has empirically shown to be biased. To mitigate the bias due to self-report, excluding extreme 

reporters has been proposed and widely accepted as useful method. However, there is not 

mathematical or empirical proof that the method can mitigate or eliminate bias. We have used three 

different data sources and examined whether removing extreme reporters from analysis could 

reliably produce less biased results. Following is the detail: 

Background: The Goldberg cutoffs are used to decrease bias in self-reported estimates of 

energy intake (EISR). Whether the cutoffs decrease bias compared with objective measurements 

when used in regressions of health outcomes has not been assessed. Objective: We examined 

whether applying the Goldberg cutoffs to data used in nutrition studies could reliably produce 

less biased results. Design: We used data from the Comprehensive Assessment of Long-term 

Effects of Reducing Intake of Energy (CALERIE), the Interactive Diet and Activity Tracking in 

AARP (IDATA) Study, and the National Diet and Nutrition Survey (NDNS). Each dataset 

included EISR, EI estimated from doubly labeled water (EIDLW) as a reference method, and health 



outcomes including baseline anthropometric, biomarker, and behavioral measures and fitness 

test results. We conducted 3 linear regression analyses using EISR, EIG (plausible EISR based on 

the Goldberg cutoffs), and EIDLW as an explanatory variable for each analysis. Regression 

coefficients were denoted 𝛽መௌோ, 𝛽መீ, and 𝛽መௐ, respectively. Using the jackknife method, bias 

from 𝛽መௌோ  compared to 𝛽መௐ and remaining bias from 𝛽መீ  compared to 𝛽መௐ were 

estimated. Analyses were repeated using Pearson’s correlation coefficients. Results: Among 

those variables with significant bias, using EIG instead of EISR significantly decreased the bias 

for weight (56.1%; 95% CI: 28.5, 83.7) and waist circumference (59.8%; 95% CI: 33.2, 86.5) 

with CALERIE; for weight (20.8%; 95% CI: -6.4, 48.1) and waist circumference (17.3%; 95% 

CI: -20.8, 55.4) with IDATA; and for waist circumference (-9.5%; 95% CI: -72.2, 53.1) with 

NDNS. The reduction in bias was not statistically significant for the other outcomes. Results 

obtained with Pearson’s correlation coefficient analyses were qualitatively consistent. 

Conclusions: Some, but not all, associations between EIG and outcomes were biased compared 

with EIDLW. Use of the Goldberg cutoffs was not a reliable method for reducing bias. 

In literature search, we also found the Goldberg cutoffs are used to exclude extreme reporters not 

only in terms of energy intake, but also dietary information. We will apply this approach to test 

whether the Goldberg cutoff reliably reduce reporting bias of dietary consumption (such as sodium 

and potassium). The results of this study were presented at Obesityweek at Nashville (USA) in 

2018, and published in American Journal of Clinical Nutrition in 2019. 

3. Propose novel sample size calculation framework with plasmode approach. Followings are 

summary of each project 

Murine (i.e., mouse and rat) is common animal model used for preclinical research. Due to technical 

and financial limitation as well as for animal welfare, using minimal number of animals is 

recommended. To compute sample size, usually power calculation is conducted, however, there are 

several assumptions behind it. For example, data distribution is assumed to follow normal 

distribution and the variances are assumed to be identical between control and treatment groups. 

However, most of the data may not meet these assumptions. We proposed a plasmode approach, in 

which the population distribution is identical to empirical distribution. Following is the detail: 

Background: Genetic obesity is frequently studied in murine (i.e., mouse and rat) animal 

models to elucidate potential explanations, causes, and correlates of obesity in humans and 

other animals. However, these studies often use small sample sizes, and the data may violate 

some of the assumptions of common statistical tests. Plasmode-based simulation using empirical 

animal data can provide more real-world answers to whether and to what extent these factors 

affect type I error rates and statistical power. Objective: To evaluate type I error rates and 

statistical power of commonly used statistical analyses with small (n≤5) to moderate sample 

sizes, by using plasmode-based simulation from existing weight data from murine genetic 

models of obesity. Methods: We compared 7-11 week old weight data from five distinct, 

homozygous, monogenic, murine models of obesity with non-mutant controls of both sexes. To 

examine whether type I error rates could be affected by choice of statistical tests, we adjusted 

the empirical distributions of weights to ensure the null hypothesis (i.e., no mean difference) in 



two ways: Case 1) center weight distributions of both groups on the same mean weight; Case 2) 

combine data from control and mutant groups into one distribution. From these cases, 3 to 20 

mice were resampled to create a ‘plasmode’ dataset. We performed five common tests (Student's 

t-test, Welch's t-test, Wilcoxon test, permutation test and bootstrap test) on the plasmode 

datasets and computed type I error rates. Power was assessed using plasmode datasets in which 

the mean of the control group was shifted by adding a constant value as in Case 1 to create 

different effect sizes while keeping other aspects of the data distributions (e.g., variance) intact. 

Results: For Case 1, Type I error rates were significantly higher than the nominal significance 

level of 0.05, which we name ‘type I error rate inflation’, for Student’s t-test, Welch’s t-test and 

permutation test, especially when sample size was small, whereas conservative error rates were 

noted for bootstrap with small samples. Because of heterogeneity of variance, Wilcoxon test was 

generally inappropriate because it tests for differences in distribution, not just differences in 

central tendency. For Case 2, consistent type I error inflation was observed only for permutation 

test with small samples. In both Cases, increasing sample size mitigated inflation and deflation. 

Patterns were generally similar when significance was set to 0.01, 0.005, and 0.001, with a 

couple marked differences. Power was markedly higher or lower from the theoretical power, 

particularly with small samples. Compared with the other tests, bootstrap was underpowered 

with small samples as a tradeoff for maintaining type I error rates, and permutation was 

overpowered in conjunction with inflated type I error rates. Conclusions: With small samples 

(n≤5), bootstrap avoided type I error rate inflation, but often at the cost of lower power. To 

avoid type I error rate inflation for other tests, sample size should be increased. Wilcoxon 

should be avoided because of heterogeneity of weight distributions between mutant and control 

mice. 

Overall, our study suggested bootstrap test is the best statistical test in terms of type I error rate, 

although there is an issue of power. However the conclusion is reasonable only for this specific case 

we studied (i.e., murine genetic model of obesity). To make our claim more general, and also these 

approach more feasible for non-statisticians, we are planning to develop a software for sample size 

calculation. The results of this study were presented at American Society for Nutrition at Boltimore 

(USA) in 2019, and the manuscript was submitted. 
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