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A characteristic feature of the neocortex is its laminar organization. The cortical columnar
microcircuitry is viewed as a stack of interconnected yet distinct neuronal networks in which
each lamina possesses somewhat unique patterns with different specific inputs, projection
targets, and feedback connections. How the laminar structure relates to mesoscopic
physiological patterns, such as local field potential (LFP) oscillations and physiological
interactions of single neurons across layers, is not well understood. Numerous oscillatory and
transient LFP patterns of functional relevance have been described in various neocortical
regions. However, their relationship to afferents, intracortical connectivity, and the firing
patterns of individual neurons has been largely unexplored.

Using multisite recording silicon probes that span all cortical layers, I sought to characterize
layer-specific physiological patterns and neuronal cross-talk between layers in the primary
visual cortex (V1) of freely behaving mice. The well-characterized anatomical connectivity
and the diverse neuronal types of V1 make this cortical area ideal to investigate how the
different cell types in different layers interact during physiological operations, such as sensory
processing and offline states, such as sleep. Previous recordings in the hippocampus, using a
similar approach, have led to a solid understanding of the relationship between extracellular
signals and anatomical connectivity. LFP patterns can identify layers in vivo with <25-50 um
precision and have been used to identify the unique relationship between upstream activity
levels and hippocampal spike outputs and relate such input-output transformation to behavior.
Similar strategies have been followed in the V1 of waking monkeys and other cortical areas in
rodents, mostly under anesthesia. In these previous studies, layer boundaries were estimated
mainly by depth criteria, and the relationship among LFP depth profiles, neuronal activity, and
interlayer interactions in different behavioral states was not addressed quantitatively.

Our goal was to define layers functionally in V1 of the mouse and relate them to classical
anatomical layers. Because spontaneous mesoscopic patterns in the primate V1 are
characterized by gamma, alpha, and slow oscillations, I searched for their corresponding
patterns in the mouse. Finally, I examined the brain state-dependent spike transmission
probabilities among putative principal cells and inhibitory interneurons across cortical layers
in waking and sleep to quantify their brain state dependence.

Depth profiles of unit power and sink-source distributions of slow oscillations of non-REM
sleep provided consistent physiological landmarks in V1 across animals. I report the following



findings: (1) Coherence and ICA of gamma oscillations (30—100 Hz) and spike-gamma LFP
coupling identified six physiological layers and distinguished further sublayers. (2) Firing
rates, burstiness, and other physiological features of neurons displayed distinct layer and brain
state dependence. (3) Monosynaptic connections, quantified by a spike transmission
probability method, revealed highly structured distributions within and across layers.
Connection strengths were skewed, with a minority of highly connected hubs. Spike
transmission between E-E pairs and E-I pairs from layer 2/3 to layer 5 was stronger during
waking compared with non-REM sleep but stronger among deep-layer excitatory neuron pairs
during non-REM sleep. (4) The most prominent LFP pattern during waking was a 3—6 Hz
rhythm with characteristic phase preferences of spikes across layers. (5) Spiking of a small
subset of neurons in deep layers was anticorrelated with all other neurons, and these neurons
were most active in the DOWN state of slow oscillations. Our findings link mesoscopic LFPs
and single-neuron interactions with multilayered anatomical organization in V1.

In the following I will explain further about the physiological identification of functional
layers in the neocortex:

The term “layer” has been used differently in different structures. For example, in the
hippocampus, apical and basal dendritic layers are distinguished from somatic layers of the
same neurons. In contrast, “layer” in the neocortex traditionally refers to histologically distinct
somatic layers. However, a given somatic layer (e.g., layer 2) is also the apical dendritic layer
of other neurons (e.g., layer 3 and layer 5 neurons). Afferents from different upstream regions
can preferentially target neurons of a given layer or multiple layers. For example, although the
highest density of thalamocortical afferents is present in layer 4, collaterals of these axons also
innervate both superficial and deep layers, contacting several types of neurons. Nevertheless,
afferents from different sources typically segregate on different segments of dendrites.
Similarly, inhibitory interneurons of the same class converge on the same neuronal domains,
whereas different types converge on distinct somadendritic domains of their targets. In
addition, biophysical experiments demonstrate that different segments of pyramidal neurons
are electrically isolated, and each functional class of inputs is initially processed in relative
independence of the other. Our experiments identified these physiologically distinct layers.

Previous work in the hippocampus has shown that coherence in the gamma frequency range,
measured across electrodes in the same layer innervated by the same afferents, is high over
long lateral distances, whereas coherence across electrodes placed just 100 um apart but in
different layers is low. Similar segregation by coherence has been described between
superficial and deep layers in the V1 of the monkey. I hypothesize that segregation of
excitatory and inhibitory inputs on the orderly arranged principal cell populations may be
responsible for the observed layer-specific extracellular gamma currents.

Both the gradient-descent algorithm performed on gamma oscillation and ICA identified six
strata, which can be regarded as functionally distinct layers. Spike-gamma LFP phase-
coupling, in turn, allowed us to relate these physiological layers precisely to the depth
distribution of neuronal somata. This additional step effectively separated layer 6 neurons into
deep and superficial groups and divided layer 5 neurons into three subgroups. By depth
criteria, two of these three groups may be classified as layer SA (cortico-cortical with thin
apical dendrites) and 5B (cortical-subcortical with thick apical dendrites) neurons,
respectively. Our third, most superficial group may represent a transitional form between layer
4 and layer 5 neurons. Our clustering method also identified two groups in layers 2/3, possibly
corresponding to layer 2 and layer 3 neurons. Our physiology-based classification of principal
neurons will require confirmation by future optogenetic experiments using available genetic
markers of layer and sublayer-specific pyramidal neurons. Overall, our findings demonstrate
that physiological properties of neurons, especially their relationship to gamma LFP, can be
exploited to relate them to classical anatomy-based layer segregation. In turn, the spiking
activity of the classified groups can be examined for their contribution to brain state-dependent
collective network patterns.
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