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Summary

During the stay, I conducted the following researches:

e Developing foundation of analysis and geometry on configuration spaces over singular
spaces by [4, 5, 6, 7, 8] with Lorenzo Dello Schiavo (IST Austria);

e Geometric analysis on configuration spaces by [3] with Elia Brué (Princeton).
Motivation

The configuration space T(X) over the base space X is the space of all locally finite point mea-
sures on X, which has been studied in various areas of mathematics: interacting particle systems
in statistical physics; infinite-dimensional metric measure geometry; representation theory of dif-
feomorphism groups etc.

Motivation from statistical physics:

In real-world situations, particles move in spaces with a complicated structure, e.g. molecules
moving inside cells, composite materials or super-cooled media. In these environments, the motion
of particles is possibly highly degenerated. In these cases, the corresponding base space X is
far from being a smooth Riemannian manifold, and the degeneracy of the metric structure
may consist of singularities of various types: obstacles, barriers, bottlenecks, etc.. Furthermore,
particles could interact with each other in a complicated way, beyond the standard treatment
within the framework of Gibbs measures. From these viewpoint, we are motived to establish the
foundations of analysis and geometry of YT(X) over general spaces X and invariant measures p,
aiming to include all the aforementioned singular settings.

Motivation from metric measure geometry:

In light of the developments of metric measure geometry in the last two decades, various systematic
treatments of the geometry of singular spaces have been developed based on e.g., volume doubling
and weak Poincaré inequalities, or the synthetic Ricci curvature bounds.

However, many important infinite-dimensional spaces lie outside the scope of these theories,
being extended-metric measure spaces and displaying pathologies (distance functions are not con-
tinuous, Lipschitz functions are not necessarily measurable, metric balls are negligible sets etc).
These obstacles are partially overcome by the extended-metric measure theory developed by L. Am-
brosio, N. Gigli, G. Savaré [2], L. Ambrosio, M. Erbar, G. Savaré [1], and G. Savaré’s lecture note
(CIME Lecture note [9]).

The applicability of these abstract theory to concrete infinite-dimensional spaces remains how-
ever non-trivial. Indeed, as is indicated by measure-concentration phenomena, Lipschitz functions
on infinite-dimensional spaces are ‘approximately constant’ , and their Cheeger energy could van-
ish identically. In the present case for instance, cylinder functions on Y(X) — the most importan
class of test functions on T(X) — are typically not Lipschitz w.r.t. the L2-transportation distance
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ds. Thus, until one can show the non-triviality of Cheeger energies, the aforementioned abstract
theory does not provide any concrete information.

One of our motivations in this project is to establish solid foundations for the metric mea-
sure geometry in the case of the configuration space Y(X), and to understand the corresponding
statistical-physical diffusion structure in terms of infinite-dimensional metric measure theory.

Motivation from Random networks:

Every configuration v € T can be regarded as the set of vertices of a graph, with edges determined
according to some assigned rule (e.g., two vertices are connected if their distance is less than some
fixed constant). Then, each diffusion process on T describes the evolution of a random graph on X.
These random graphs naturally model random networks in which many agents move randomly in
the base space and are related based on the distance between their positions. From the viewpoint
of graph theory, it is natural to allow X to be a general metric space, since networks can be
embedded in a metric space, but not necessarily in a standard Euclidean space or a manifold.

Results
1. Foundation of analysis and geometry. In [4, 5], we provide a complete identification of the
following two differential structures:
e the analytic structure: the Dirichlet form (E#, D(EF)) on L2(Y(X), u) lifted from the base
space X by means of Dirichlet form theory
e the geometric structure: the extended metric measure space (Y(X),ds, 1) induced on con-
figuration spaces by the L2-transportation distance ds.
We provide Rademacher theorem for (E#, D(EH)) w.r.t. d2 and various types of Sobolev-to-Lipschitz
properties, we finally show that

e the Dirichlet form coincides with the Cheeger energy w.r.t. do
(€, D(EM)) = (Chay, W2(T, da, ).
o the intrinsic distance w.r.t. the Dirichlet form coincides with the L2-transportation distance
de =dge.

Our setting contains a wide class of singular spaces X and invariant measures pu. The class of
base spaces we discuss includes RCD spaces, locally doubling metric measure spaces satisfying a
local Poincaré inequality, and sub-Riemannian manifolds; as for p our results include Campbell
measures and quasi-Gibbs measures, in particular: Poisson measures, canonical Gibbs measures,
as well as some determinantal/permanental point processes (sineg, Airy gz, Bessel, g, Ginibre).
We have a number of applications of these fundamental results discussed in [5, 6, 7, 8], e.g.,

e (Curvature bound): (T,ds,m,) satisfies RCD(K, c0) if the base space (X,d, m) satisfies
RCD(K,00). (mm is the Poisson measure)

e (Varadhan short-time asymptotic): If (X, d, m) is RCD(X, co) N CAT(0), then
- }in(l) 4tlog P,(A,B) = d3(A,B), A, B C YT(X) measurable,
e
where P,(A, B) = fA P,xpdm,, and P, is the heat semigroup on Y(X) with the invariant

measure .
o (L*>-to-Lip,-regularisation of the heat semigroup): If (X,d, m) is RCD(K, c0), then
P,F € Lip,(Y,d2), VF € L*(Y,m,), vt > 0.

Many other applications are expected based on the canonical differential structure we constructed.
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2. Geometric measure theory. According to geometric measure theory in the Euclidean spaces,
perimeter measures can be expressed through the GauB-Green formula in terms of the one-
codimensional Hausdorff measure restricted on the reduced boundary. In [3], we develop an infinite-
dimensional counterpart of the geometric measure theory in the configuration space. We construct
the finite-codimensional Poisson measure and introduce the notion of the reduced boundary. After
investigating its relation with the notion of capacities, we prove the Gau-Green formula, through
which perimeter measures can be expressed by the one-codimensional Poisson measure restricted on
the reduced boundary. Furthermore, we give several equivalent characterisations of BV functions.
As an application to statistical physics, we provide a generalised 1t6’s formula for the corresponding
infinite-particle systems restricted on sets of finite perimeters.
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