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Annual report

Hiromi Ebisu

Department of Condensed Matter Physics, Weizmann Institute of
Science, Rehovot, Israel 76100

This is the annual report of my research which is based on the joint work
with Rohit Kalloor, Alexei M. Tsvelik, Yuval Oreg (to appear)

1 Introduction

One of the pivotal features of topological phases of matter is that they have
exotics fractional excitations, the so-called anyons[4]. Generally anyons fall into
two categories; Abelian anyons and non-Abelian anyons. Particularly, non-
Abelian anyons are of importance as they show non-Abelian statistics, meaning
braiding two anyons is characterized by a matrix in a degenerate Hilbert state,
which can potentially be used for quantum information process. To be more spe-
cific, world lines of anyons can be interpreted as strands in the 2 + 1 dimension,
and braid group representation of these strands may be associated with unitary
operation of a quantum state. A nice thing about this interpretation is that
such an unitary operation is topological, hence immune to a local perturbation.
This can be intuitively understood by noting that a small deformation of the
strands doesn’t affect the global configuration of the strands such as the linking
number of the strands, over-crossing and under-crossing, e.t.c. Therefore one
expects quantum computations realized by braiding anyons are topologically
robust.

A prominent example of a non-Abelian topological phase is the Moore-Read
state in ν = 5/2 fractional quantum Hall fluid. In this state, the Ising anyon
may occur as an excitation. However, in quantum information perspective, the
Ising anyon is not universal; braid group representation of the Ising anyons is
not sufficient to give an arbitrary unitary operators. It is therefore desirable to
obtain a non-Abelian topological phase beyond the Moore-Read state.

In this project, we propose a way to construct topological phases in the
networks of interacting integer quantum Hall (IQH) islands. Our phases include
the Kalmeyer-Laughlin (KL) state[3], one of the spin liquid phases which has
deconfined spin excitation, and a phase which has a special anyon, the so-called
Fibonacci anyon which is universal in the quantum information point of view.
The basic idea behind our proposal depends upon the network construction,
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originally suggested by Chalker and Coddington[1] and recently updated by Hu
and Kane[2] in the context of interacting p-wave superconductors.

(a) (b)

Figure 1: (a) An integer quantum Hall (IQH) island with filling fraction ν = 2k
which has 2k chiral edge modes moving in the counterclockwise direction. These
modes are decomposed into the U(1) ⊕ SU(k)2 sectors marked by the bold red
line and the SU(2)k sector depicted by the dashed red line. (b)Networks of
the IQH islands. The U(1) ⊕ SU(k)2 sectors (bold red line) are confined in
each IQH island, whereas the SU(2)k sector (dashed red line) propagates inside
the vacuum area or along the entire edge of the system, yielding the SU(2)k
topological phase.

2 Summary of results

2.1 Simplest case – construction of the KL state

Here, we give a simplest case of our construction, that is, the KL state. We
prepare an IQH island with filling fraction ν = 2 in a square shape as illustrated
in Fig. 1(a). There are two chiral edge modes propagating along the island
characterized by two copies of U(1) chiral fields, thus, the chiral edge modes
have the U(2) symmetry. A key observation is that U(2) is decomposed as
U(2) = U(1)+SU(2), reminiscent of the decomposition into charge and neutral
modes in a fractional quantum Hall state. This decomposition is also interpreted
as spin-charge separation in the physics of Tomonaga-Luttinger liquid.
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A more precise form of this decomposition is described by conformal embed-
ding, which reads as

U(2)1 = U(1) ⊕ SU(2)1 (1)

where the number in the subscript represents a level of a current algebra. We
don’t go into the details of the level any further but still subsequent physical
argument can be understood. It turns out that this conformal embedding is
suggestive of the KL state, as on the right hand side (r.h.s) of Eq. (1), the
SU(2)1 sector appears, which is exactly what characterizes the KL state.

To proceed further we introduce an interaction between adjacent IQH is-
lands. To clarify the mechanism, we suggest the reader to focus on the area
inside the back frame as shown in Fig. 1(b). In this area there are two pairs
of counter-propagating modes. Denoting ψR,α (ψL,α) as the Dirac field with
α = 1, 2 corresponding to edge modes of the top (bottom) IQH island inside the
black frame, we define the following currents

JxR/L =
1

2
(ψ†
R/L,1ψR/L,2 + ψ†

R/L,2ψR/L,1),

JyR/L =
1

2
(−iψ†

R/L,1ψR/L,2 + iψ†
R/L,2ψR/L,1),

JzR/L =
1

2
(ψ†
R/L,1ψR/L,1 − ψ†

R/L,2ψR/L,2). (2)

These currents have SU(2) symmetry, allowing us to write them in a more
compact form as

JaR/L =
∑

α,β=1,2

ψ†
R/L,α

σaαβ
2
ψR/L,β (a = x, y, z) (3)

with σaα,β being the SU(2) generators. The Hamiltonian inside the black frame
is given by

H2 =

∫
dx

∑
α

v(iψ†
R,α∂xψR,α − iψ†

L,α∂xψL,α)

+
∑

a=x,y,z

λ2J
a
RJ

a
L, (4)

where v is the velocity of the Dirac fields, x is the one-dimensional coordinate
in the frame, and λ2 is the coupling constant. Our network has the identical
interactions Eq. (4) between all adjacent islands, as indicated by areas with grey
color in Fig. 1(b).

At λ2 > 0 the current-current interaction (i.e., the term in the second line)
in Eq. (4) is marginally relevant and gaps out the SU(2)1 sector in Eq. (1),
yielding the desired KL state, i.e., the SU(2)1 topological phase. Indeed, the
edge mode of the ungapped sector on each island [the U(1) sector in Eq. (1)]
tunnels through the interacting area, but the SU(2)1 mode bounces off. As a
consequence, the U(1) sectors remain confined to each IQH island [see red bold
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lines in Fig. 1(b) ]. On the other hand, the edge modes of the gapped SU(2)1
sector are not transmitted through the interaction areas and hence become
confined to the edge of the vacuum regions. However, as is clear from Fig. 1(b),
one chiral mode is free to propagate along the entire edge of the system [red
dashed line in Fig. 1(b)], which results in the desired KL state. The suggested
mechanism imposes restrictions on the size of the islands: they must be larger
than the correlation length ξ ∼ exp(2πv/λ2) to allow the gap to develop.

There is only one nontrivial anyonic excitation s in this phase and fusion
rule is given by s × s = I. The s anyon is nothing but the semion described
above. Physically, such excitation can bind to a h/e vortex in an IQH island,
as may occur in a layer structured IQH island.

2.2 Other phases

We can construct other topological phases by simply replacing the ν = 2 IQH
islands with the ones at the filling fraction ν = 2k in the geometry shown in
Fig. 1(b). Instead of Eq. (1), utilizing the following conformal embedding

U(2k)1 = U(1) ⊕ SU(2)k ⊕ SU(k)2, (5)

and introducing an interaction between adjacent IQH islands in the similar form
as the one in Eq. (4), we obtain the SU(2)k topological phase.

When k = 2, we get the SU(2)2 topological phase in the networks of ν = 4
IQH islands. In this phase, there are three types of excitations, I, ψ, σ with
fusion rules ψ × ψ = I, ψ × σ = σ, σ × σ = I + ψ. This phase behaves as the
anti-Pfaffian state, one of a candidate state of a fractional quantum Hall state
at ν = 5/2. However, there are a few physical differences in these two phases;
the filling fraction of the anti-Pfaffian is ν = 5/2, on the other hand, the SU(2)2
topological phase is constructed by ν = 4 IQH islands. Also, in the anti-Pfaffian
state, there are charge modes which propagates along the edge whereas in the
SU(2)2 phase, there are only the neutral modes.

The case of k = 3 is also of our interest as the obtained phase is the SU(2)3
topological phase which has the Fibonacci anyon – a “holy grail” of the quantum
computation.

3 Conclusion

In this project, we have demonstrated that there are rich topological phases in
interacting IQH islands which are characterized by the SU(2)k sector. Especially
we focused on the case of k = 1 , 2, and 3.

Experimental realization of our topological phases is an important issue.
In the case of k = 1, the current-current interaction in Eq. (4) can be under-
stood in the bosonization language as a combination of backward scattering and
density-density interaction. One possible way to tune such an interaction would
be controlling the density by adjusting the gate voltage of the quantum Hall
sample. Furthermore, if we introduce networks of double-layer IQH islands, the
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backward scattering between adjacent islands may occur due to momentum and
spin conservation. Since the edge mode of the KL state is neutral, the fist step
towards confirmation of this state would be measuring thermal conductance.

We have mentioned that in the SU(2)3 topological phase, the Fibonacci
anyon may occur as an excitation. However, in this phase, there are other two
types of non-trivial anyons which are not universal. Finding a way to excite
only the Fibonacci anyons in this phase and furthermore carrying out braiding
these anyons is an important remaining issue in the perspective of quantum
computation. One of the strategies would be to construct the so-called (G2)1
topological phase which has only one type of non-trivial anyonic excitation which
is the Fibonacci anyon.
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