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1 D3ϒϨʔϯϘοΫε഑Ґͱ Nݩ2࣍ = (0, 4)௒ରশήʔδཧ࿦

ݩ2࣍ N = (0, 4)ΧΠϥϧ௒ରশੑ͸ ݩ3࣍ N = (0, 4)௒ରশ৔ͷཧ࿦ʹ͓͚Δ half-BPSڥք৚݅Ͱอ

ଘ͞ΕಘΔ௒ରশੑͰ͋Γɺ3࣍ݩ N = 4௒ରশ৔ͷཧ࿦Λ࣮͢ݱΔ IIBܕ௒ݭཧ࿦ͷ Hanany-Wittenߏ

੒ [1] ʹ͞Βʹ NS5′ ϒϨʔϯͱ D5′ ϒϨʔϯΛՃ͑ͨ഑ҐʹΑ࣮ͬͯ͞ݱΕΔ [2]ɻࢲ͸ Amihay Hanany

Λ͞ΒʹҰൠԽͯ͠گͱͱ΋ʹ͜ͷঢ়ࢯ D3ϒϨʔϯ͕ NS5ϒϨʔϯͱ NS5′ ϒϨʔϯͷؒʹऔΓғ·ΕΔ

ʮD3ϒϨʔϯϘοΫε഑ҐʯΛ͑ߟɺͦͷ D3ϒϨʔϯͷ௿ΤωϧΪʔ༗ޮཧ࿦ͱͯ͠ݱΕΔ৽͍͠ܕͷ 2࣍

ݩ N = (0, 4) ௒ରশ quiver ήʔδཧ࿦ͷڀݚʹऔΓ૊Μͩɻզʑ͸पظతͳʮD3 ϒϨʔϯϘοΫε഑Ґʯ

͕ orbifoldಛҟ఺Λϓϩʔϒ͢Δ D1-D5-D5′ ϒϨʔϯܥʹ T૒ରͰ͋Δ͜ͱʹண໨͠ɺDouglas-Mooreͷ

ख๏ [3]Λ༻͍ͯ ݩ2࣍ N = (0, 4)௒ରশ quiverήʔδཧ࿦ͷ field contentͱ૬࡞ޓ༻Λܾఆ͠ɺཧ࿦Λಛ

ఆ͢Δ quiverμΠΞάϥϜΛ༩͑ͨ (ਤ র)ɻࢀ1

Figure 2: Left: A quiver diagram for D1-branes on C2/Z2 × C2. Right: D3 brane box configuration

with which is T-dual to D1-branes on C2/Z2 × C2.fig_44quiver

decomposes as a (0, 2) gauge multiplet and a (0, 2) adjoint Fermi multiplet. The map is shown

in Figure
fig_04vm_dec
??.

(i) (ii)

• Lines of (0, 4) hyper and twisted hyper multiplets in (0, 4) quiver diagram becomes a bi-

directional line in the N = 1 quiver diagram. This is shown in Figure 2.

3.1.3 C2/Z2 × C2

subsec_d1zkzk

In this case the the gauge group is U(N)1,0 × U(N)2,0. There are eight (0, 2) chiral multiplets

{Ri1,i1+1, Li1,i1−1, Ui1,i1 , Di1,i1}i1=1,2. (3.10) z2_cm

Ri1,i1+1 and Li1,ii−1 transform as bi-fundamental representation under the gauge group U(N)1,0 ×
U(N)2,0 and they form two bi-fundamental (0, 4) hypermultiplets: (R1,2, L2,1) ⊕ (R2,1, L1,2). Ui1,i1

and Di1,i1 transform as adjoint representation under the gauge group and they combine into two

adjoint (0, 4)twisted hypermultiplets: (U1,1, D1,1) ⊕ (U2,2, D2,2).

There are also six (0, 2) Fermi multiplets

{∆i1,i1+1,∇i1,i1−1,Λi1,i1}i1=1,2. (3.11) z2_fm

∆i1,i1+1 and ∇i1,i1−1 transform as bi-fundamental representation under U(N)1,0 × U(N)2,0 and

they are promoted to bi-fundamental (0, 4) Fermi multiplets. Λi1,i1 are adjoint under U(N)1,0 ×
U(N)2,0 and they combine (0, 2) gauge multiplet to form two (0, 4) vector multiplets. The theory

can be encoded by (0, 2) quiver diagram shown in Figure
fig_44quiver
2. As usual, the node corresponds to

each factor of gauge symmetry groups. The blue arrows represent R and L forming bi-fundamental

(0, 4)hypermultiplets and the green loops represent U and D forming bi-fundamental (0, 4)twisted

hypermultiplets. Four red edges between two nodes describe ∆ and ∇ while two red loops are adjoint

Λ.

In addition, (0, 4) supersymmetry is enhanced to (4, 4) in such a way that bi-fundamental (0, 4)

hypermultiplets (R,L) and bi-fundamental (0, 4) Fermi multiplets (U,D) further combine into (4, 4)

hypermultiplets and adjoint (0, 4) twisted hypermultiplets (U,D) and (0, 4) vector multiplets are

promoted to (4, 4) vector multiplets. In the T-dual brane box configuration is shown in Figure
fig_44quiver
2.

This is obtained by the dimensional reduction of the 3d N = 4 quiver gauge theory.
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Figure 6: (i) (0, 4) quiver diagram for D1-branes on C2/Z2 × C2/Z2. (ii) The corresponding (0, 2)

quiver diagram. (iii) D3-brane box configuration which is T-dual to D1-branes on C2/Z2 × C2/Z2.

Horizontal, vertical and diagonal edges represent hyper, twisted hyper and Fermi multiplets.fig_z2z2

C2/Z2 × C2/Z2 is given by

G =
2∏

i1=1

2∏

i2=1

U(N)i1,i2 (3.12) z2z2_G

The matter content consists of sixteen (0, 2) chiral multiplets

{
Ri,i+(1,0), Li,i+(−1,0), Ui,i+(0,1), Di,i+(0,−1)

}
(3.13) z2z2content

and twelve (0, 2) Fermi multiplets

{
∆i,i−(1,1),∇i,i−(1,1),Λi,i

}
. (3.14) z2z2content

where i = (i1, i2) are pairs of modulo 2 gauge indices with i1 = 1, 2 and i2 = 1, 2. The quiver diagram

is shown in Figure
fig_z2z2
6.

The blue and green arrows describe bi-fundamental (0, 4) hyper and twisted hypermultiplets

respectively. The red lines correspond to bi-fundamental (0, 4) Fermi multiplets while the red loop

combine with (0, 2) gauge multiplet into (0, 4) vector multiplets.
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ਤ 1 (i) N = (0, 4) quiver μΠΞάϥϜɻᒵ৭ͷ݁અ఺͸ N = (0, 4) ήʔδଟॏ߲ɺ੺ઢ͸ϑΣϧ

ϛଟॏ߲ɺ੨ઢ͸ N = (0, 4) ϋΠύʔଟॏ߲ɺ྘ઢ͸ twisted ϋΠύʔଟॏ߲Λද͢ɻ(ii) N = (0, 2)

quiverμΠΞάϥϜɻԫ৭ͷ݁અ఺͸N = (0, 2)ήʔδଟॏ߲ɺ੺ઢ͸ϑΣϧϛଟॏ߲ɺ੨໼ҹͱ྘໼ҹ

͸N = (0, 2)ΧΠϥϧଟॏ߲Λද͢ɻ(iii) (i)ͱ (ii)ͷ quiverμΠΞάϥϜʹରԠ͢ΔϒϨʔϯϘοΫε

഑Ґɻ4ݸͷ D3ϒϨʔϯϘοΫε͸֤ʑॎํ޲ͷ NS5ϒϨʔϯͱԣํ޲ͷ NS5′ ϒϨʔϯʹΑͬͯғ·

Ε͍ͯΔɻ

͞Βʹ քͷΞϊϚϦʔΛղੳ͢Δ͜ͱʹΑͬͯզʑ͸ڥݩ2࣍ NS5ϒϨʔϯͱ NS5′ ϒϨʔϯͷδϟϯΫ

1



γϣϯʹ͓͍ͯήʔδΞϊϚϦʔͷՄ׵෦෼Λ૬͢ࡴΔ cross-determinantදݱͷ N = (0, 2)ϑΣϧϛଟॏ

߲͕ଘ͢ࡏ΂͖Ͱ͋Δ͜ͱΛ໌Β͔ʹͨ͠ (ਤ 2)ɻ

Note that the fundamental and anti-fundamental representations have the same contributions to

the ’t Hooft anomalies. While gauge anomaly cancellation is required for consistent gauge theory,

global symmetry may be anomalous. In the IR, the current of the global symmetry of Lie algebra

f can be holomorphic or anti-holomorphic, i.e. left- or right-moving. Then the corresponding global

symmetry can be enhanced to the affine Lie algebra f̂ of level |2Af| which act in the holomorphic or

anti-holomorphic sector of the associated CFT depending on the sign of the anomaly coefficient Af.

**TODO: Check the Abelian anomalies. In
Mohri:1997ef
[11] the theories on D1-branes at singularities the

non-vanishing Abelian gauge anomalies are shown to be cancelled by a generalized Green-Schwarz

mechanism. In
Gadde:2013lxa
[12] the addition of appropriate matter cancels the non-vanishing Abelian gauge

anomalies. **

When we consider (0, 2) boundary conditions in 3d N = 2 theory, the anomaly coefficient also

receives contribution from bulk fields. They have half of the contributions as those from boundary

fields
Dimofte:2017tpi
[8]:

3d N = 2 multiplet b.c. representation ASU(N)

chiral multiplet D b.c. ! or ! 1
4

adjoint N
2

chiral multiplet N b.c. ! or ! − 1
4

adjoint −N
2

gauge multiplet N b.c. adjoint −N

gauge multiplet D b.c. adjoint N

(1.36) t_Anom2a

2 (0, 4) brane box model
subsec_d3box

2.1 Brane configurations
subsec_04susy

In
Hanany:1996ie, Gaiotto:2008ak
[13, 14] configurations of D3-branes and 5-branes were used to construct 3d N = 4 supersymmetric

gauge theories. In this section we will generalize these brane configurations to construct 2d N = (0, 4)

supersymmetric gauge theories. We consider Type IIB superstring theory in Minkowski spacetime

with time coordinate x0 and space coordinates x1, · · · , x9. Let QL and QR be the supercharges gen-

erated by left- and right-moving world-sheet degrees of freedom. They satisfy the chirality conditions

of Type IIB superstring theory: ΓQL = QL, ΓQR = QR where Γ = Γ0 · · ·Γ9.

We introduce NS5-branes with world-volumes in (x0, x1, x2, x3, x4, x5) directions, D5-branes

with world-volumes in (x0, x1, x2, x7, x8, x9) directions, NS5′-branes with world-volumes in (x0, x1,

x6, x7, x8, x9) directions, D5′-branes with world-volumes in (x0, x1, x3, x4, x5, x6) directions, and

D3-branes in (x0, x1, x2, x6) directions:

0 1 2 3 4 5 6 7 8 9

D3 ◦ ◦ ◦ − − − ◦ − − −
NS5 ◦ ◦ ◦ ◦ ◦ ◦ − − − −
D5 ◦ ◦ ◦ − − − − ◦ ◦ ◦
NS5′ ◦ ◦ − − − − ◦ ◦ ◦ ◦
D5′ ◦ ◦ − ◦ ◦ ◦ ◦ − − −

(2.1) 04_brane1

All the branes share the (x0, x1) directions. We will consider the case in which the D3-branes are

bounded by all the 5-branes in the (x2, x6) directions. According to the Kaluza-Klein reduction in

these two directions, the world-volume theories on the D3-branes therefore are macroscopically two

dimensional.
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ਤ 2 NS5ϒϨʔϯͱ NS5′ ϒϨʔϯͷδϟϯΫγϣϯʹ͓͍ͯݱΕΔ cross-determinantϑΣϧϛଟॏ

߲ɻਤͰࣔ͞Ε͍ͯΔ্ࠨͱӈԼͷਖ਼߸͸ରԠ͢Δήʔδରশੑͷ determinantදݱ (ήʔδՙి +1)Λ

ࣔ͠ɺӈ্ͱࠨԼͷෛ߸͸ରԠ͢Δήʔδରশੑͷ inverse determinantදݱ (ήʔδՙి −1)Λࣔ͢ɻ

ຊڀݚ੒Ռ͸࿦จ [4]ʹ·ͱΊΒΕ͍ͯΔɻ

2 Nݩ4࣍ = 4௒ରশ Yang-Millsཧ࿦ͷίʔφʔ഑Ґͷ૒ରੑͱ௒ରশ

਺ࢦ

௒ࢦܗڞ਺͸௒ରশ৔ͷྔࢠ࿦ͱͦͷ૒ରੑͷڀݚʹ͓͍ͯॏཁͳ໾ׂΛ୲͏͜ͱ͕஌ΒΕ͍ͯΔɻ௒ܗڞ

਺͸ࢦ 2ͭͷ௒ՙి͕ଘ͠ࡏɺͦͷ 2৐͕ dilatationԋࢠࢉͱཧ࿦ͷଞͷରশੑͷੜ੒ࢠͷઢ݁ܕ߹ͱͳΔ

৔߹ʹߏ੒ՄೳͰ͋Δɻ௒ࢦܗڞ਺͸௒ܗڞ৔ͷཧ࿦ͷ bulk ͱ༷ʑͳ௒ؕܽܗڞ (superconformal defect)

্ʹॅΜͰ͍ΔہॴԋࢠࢉΛ਺্͑͛Δͷʹ༻͍Δ͜ͱ͕Ͱ͖Δɻࢲ͸ Davide Gaiotto ʹͱͱ΋ࢯ 4 ݩ࣍

N = 4௒ରশ U(N)ήʔδཧ࿦ʹ͓͍ͯ Nݩ3࣍ = 4௒ܗڞ୅਺Λอଘ͢Δʮhalf-BPS ؕܽݩ3࣍ (༨࣍ݩ

1ͷܽؕ)ʯͰ͋Δڥք͋Δ͍͸ΠϯλʔϑΣʔεͱ Nݩ2࣍ = (0, 4)௒ܗڞ୅਺Λอଘ͢Δʮquarter-BPS 2

ؕܽݩ࣍ (༨࣍ݩ 2ͷܽؕ)ʯͰ͋Δίʔφʔ͋Δ͍͸δϟϯΫγϣϯ͕ଘ͢ࡏΔ഑ҐΛͨ͠ڀݚɻN = (0, 4)

௒ରশੑ෦෼୅਺͸زԿֶత LanglandsϓϩάϥϜʹ͓͚Δۙ࠷ͷڀݚͰॏཁͳ໾ׂΛ୲͏ͱ͑ߟΒΕ͍ͯ

Δɻզʑ͸্ड़ͷ഑Ґ͕ IIBܕ௒ݭཧ࿦ʹΑͬͯߏ੒͞ΕΔ͜ͱʹண໨ͯ͠ IIBܕ௒ݭཧ࿦ͷ S૒ରੑ͕ಋ

্͘ड़ͷ༷ʑͳήʔδཧ࿦഑Ґͷ૒ରੑΛ༧͠ݴɺ৽͍͠ܕͷ௒ࢦܗڞ਺ͷࢉܭʹΑͬͯ૒ରੑͷྗڧͳূڌ

ΛಘΔ͜ͱʹ੒ޭͨ͠ɻ͜ͷ௒ࢦܗڞ਺͸ʮquarterࢦ਺ʯͱݺ͹Εɺ4࣍ݩͷ bulkཧ࿦͕ଘ͠ࡏͳ͍৔߹ʹ

͸ ݩ3࣍ N = 4௒ରশཧ࿦ͷڥքͷہॴԋࢠࢉΛ਺্͑͛Δʮhalfࢦ਺ʯͱͳΓɺ͞Βʹ քཧ࿦ڥͷݩ3࣍

΋ଘ͠ࡏͳ͍৔߹ʹ͸ ݩ2࣍ N = (0, 4)௒ରশཧ࿦Ͱఆٛ͞ΕΔପԁछ਺ (elliptic genus)ͱͳΔɻ

௒ࢦܗڞ਺͸ಛఆͷۃ (pole)Λ͓࣋ͬͯΓɺ͜Ε͸෺ཧతʹ U(1)ϑϨʔόʔରশੑͷԼͰՙిΛ࣋ͭہॴ

ԋࢠࢉͷਅۭظ଴஋ʹରԠ͠ಘΔɻͦͯ͠ରԠ͢Δཹ਺͸੾Γ཭͞ΕΔ (decoupled)ࣗ༝৔ΛऔΓআ͘͜ͱʹ

Αͬͯͦͷਅۭظ଴஋ʹΑͬͯੜ͡Δ͘Γ͜Έྲྀ܈ΕͰ࣮͞ݱΕΔ੺֎ྖҬͷࢦ਺Λ༩͑Δɻ͜ͷ੺֎ྖҬ
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Note that the fundamental and anti-fundamental representations have the same contributions to

the ’t Hooft anomalies. While gauge anomaly cancellation is required for consistent gauge theory,

global symmetry may be anomalous. In the IR, the current of the global symmetry of Lie algebra

f can be holomorphic or anti-holomorphic, i.e. left- or right-moving. Then the corresponding global

symmetry can be enhanced to the affine Lie algebra f̂ of level |2Af| which act in the holomorphic or

anti-holomorphic sector of the associated CFT depending on the sign of the anomaly coefficient Af.

**TODO: Check the Abelian anomalies. In
Mohri:1997ef
[11] the theories on D1-branes at singularities the

non-vanishing Abelian gauge anomalies are shown to be cancelled by a generalized Green-Schwarz

mechanism. In
Gadde:2013lxa
[12] the addition of appropriate matter cancels the non-vanishing Abelian gauge

anomalies. **

When we consider (0, 2) boundary conditions in 3d N = 2 theory, the anomaly coefficient also

receives contribution from bulk fields. They have half of the contributions as those from boundary

fields
Dimofte:2017tpi
[8]:

3d N = 2 multiplet b.c. representation ASU(N)

chiral multiplet D b.c. ! or ! 1
4

adjoint N
2

chiral multiplet N b.c. ! or ! − 1
4

adjoint −N
2

gauge multiplet N b.c. adjoint −N

gauge multiplet D b.c. adjoint N

(1.36) t_Anom2a

2 (0, 4) brane box model
subsec_d3box

2.1 Brane configurations
subsec_04susy

In
Hanany:1996ie, Gaiotto:2008ak
[13, 14] configurations of D3-branes and 5-branes were used to construct 3d N = 4 supersymmetric

gauge theories. In this section we will generalize these brane configurations to construct 2d N = (0, 4)

supersymmetric gauge theories. We consider Type IIB superstring theory in Minkowski spacetime

with time coordinate x0 and space coordinates x1 , · · · , x9 . Let QL and QR be the supercharges gen-

erated by left- and right-moving world-sheet degrees of freedom. They satisfy the chirality conditions

of Type IIB superstring theory: ΓQL = QL, ΓQR = QR where Γ = Γ0 · · ·Γ9 .

We introduce NS5-branes with world-volumes in (x0 , x1 , x2 , x3 , x4 , x5 ) directions, D5-branes

with world-volumes in (x0 , x1 , x2 , x7 , x8 , x9 ) directions, NS5′-branes with world-volumes in (x0 , x1 ,

x6 , x7 , x8 , x9 ) directions, D5′-branes with world-volumes in (x0 , x1 , x3 , x4 , x5 , x6 ) directions, and

D3-branes in (x0 , x1 , x2 , x6 ) directions:

0 1 2 3 4 5 6 7 8 9

D3 ◦ ◦ ◦ − − − ◦ − − −
NS5 ◦ ◦ ◦ ◦ ◦ ◦ − − − −
D5 ◦ ◦ ◦ − − − − ◦ ◦ ◦
NS5′ ◦ ◦ − − − − ◦ ◦ ◦ ◦
D5′ ◦ ◦ − ◦ ◦ ◦ ◦ − − −

(2.1) 04_brane1

All the branes share the (x0 , x1 ) directions. We will consider the case in which the D3-branes are

bounded by all the 5-branes in the (x2 , x6 ) directions. According to the Kaluza-Klein reduction in

these two directions, the world-volume theories on the D3-branes therefore are macroscopically two

dimensional.
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account the (0, 4) boundary conditions in subsection
subsec_04BC1
2.2.1, this leads to (0, 4) U(N) vector multiplet.

Without any matter content, (0, 4) U(N) vector multiplet is anomalous.

To obtain gauge anomaly free theory from non-periodic configuration, one can add adjacent D3-

branes in (x2 , x6 ) plane. Let nTL, nT , nTR, nL, nR, nBL, nB , nBR be the numbers of D3-branes

displaced in the neighboring infinite regions in top-left, top, top-right, left, right, bottom-left, bottom

and bottom-right (see Figure
fig_singlebox
13). From the dictionary (

dic_box
3.37) of brane box, horizontally aligned nL

and nR D3-branes introduce nL and nR (0,4) fundamental hypermultiplets, vertically aligned nT and

nB D3-branes provide nT and nB (0, 4) fundamental twisted hypermultiplets, and diagonally aligned

nTL, nTR, nb and nBR D3-branes lead to nTL, nTR, nb and nBR (0, 2) fundamental Fermi multiplets.

According to the anomaly contribution (
t_Anom2a
1.40), we find f2su(N) gauge anomaly free condition

N =
1

2
(nL + nR + nT + nB)−

1

4
(nTL + nTR + nBL + nBR). (4.1) brane_anomalry_sun

4.2 Brane ordering
subsec_04ineq

We will define a pair of net numbers of D3-branes ending on a 5-brane. One is the number of D3-

branes ending on the 5-brane from the right minus the number ending from the left while the other is

the that of D3-branes ending on the 5-brane from the top minus the number ending from the bottom.

1. Any D5-branes with non-zero net numbers of D3-branes are located on the right hand of all the

NS5-branes and any D5′-branes with non-zero net numbers of D3-branes are on the top of all

the NS5′-branes. This constraint requires that we should firstly meet the data which cannot be

described by 2d gauge theory, i.e. Nahm pole ρ : su(2) → g and reduced gauge group H. This

constraint is imposed in
Gaiotto:2008ak
[13] for NS55- and D5-branes. We impose a similar condition on NS5′-

and D5′-branes.

2. The linking numbers are nondecreasing from left to right and from bottom to top. Unless this

constraint is satisfied for D5-brane, the moduli space of solutions to Nahm equation would

involve extra decoupled 3d N = 4 hypermultiplets. As Nahm pole boundary conditions are

imposed from D5′-brane
Chung:2016pgt
[14], we also impose a similar constraint on the linking numbers of

additional 5-branes. Following the same line in
Gaiotto:2008ak
[13], this constraint on a pair of two NS5-branes

leads to conditions in (0, 4) U(N) gauge theory:

NH ≥ 2N, NT ≥ 2N (4.2) 04scft_constraint

where NH is the number of (0, 4) fundamental hypermultiplet and NT is that of (0, 4) twisted

hypermultiplets. When these conditions are obeyed at each node, the (0, 4) quiver gauge theories

will be good or balanced.
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account the (0, 4) boundary conditions in subsection
subsec_04BC1
2.2.1, this leads to (0, 4) U(N) vector multiplet.

Without any matter content, (0, 4) U(N) vector multiplet is anomalous.
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NS5-branes and any D5′-branes with non-zero net numbers of D3-branes are on the top of all
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constraint is imposed in
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and D5′-branes.

2. The linking numbers are nondecreasing from left to right and from bottom to top. Unless this

constraint is satisfied for D5-brane, the moduli space of solutions to Nahm equation would

involve extra decoupled 3d N = 4 hypermultiplets. As Nahm pole boundary conditions are

imposed from D5′-brane
Chung:2016pgt
[14], we also impose a similar constraint on the linking numbers of

additional 5-branes. Following the same line in
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[13], this constraint on a pair of two NS5-branes

leads to conditions in (0, 4) U(N) gauge theory:
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Note that the fundamental and anti-fundamental representations have the same contributions to

the ’t Hooft anomalies. While gauge anomaly cancellation is required for consistent gauge theory,

global symmetry may be anomalous. In the IR, the current of the global symmetry of Lie algebra

f can be holomorphic or anti-holomorphic, i.e. left- or right-moving. Then the corresponding global

symmetry can be enhanced to the affine Lie algebra f̂ of level |2Af| which act in the holomorphic or

anti-holomorphic sector of the associated CFT depending on the sign of the anomaly coefficient Af.

**TODO: Check the Abelian anomalies. In
Mohri:1997ef
[11] the theories on D1-branes at singularities the

non-vanishing Abelian gauge anomalies are shown to be cancelled by a generalized Green-Schwarz

mechanism. In
Gadde:2013lxa
[12] the addition of appropriate matter cancels the non-vanishing Abelian gauge

anomalies. **

When we consider (0, 2) boundary conditions in 3d N = 2 theory, the anomaly coefficient also

receives contribution from bulk fields. They have half of the contributions as those from boundary
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f can be holomorphic or anti-holomorphic, i.e. left- or right-moving. Then the corresponding global

symmetry can be enhanced to the affine Lie algebra f̂ of level |2Af| which act in the holomorphic or

anti-holomorphic sector of the associated CFT depending on the sign of the anomaly coefficient Af.

**TODO: Check the Abelian anomalies. In
Mohri:1997ef
[11] the theories on D1-branes at singularities the

non-vanishing Abelian gauge anomalies are shown to be cancelled by a generalized Green-Schwarz

mechanism. In
Gadde:2013lxa
[12] the addition of appropriate matter cancels the non-vanishing Abelian gauge

anomalies. **

When we consider (0, 2) boundary conditions in 3d N = 2 theory, the anomaly coefficient also

receives contribution from bulk fields. They have half of the contributions as those from boundary

fields
Dimofte:2017tpi
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subsec_d3box

2.1 Brane configurations
subsec_04susy

In
Hanany:1996ie, Gaiotto:2008ak
[13, 14] configurations of D3-branes and 5-branes were used to construct 3d N = 4 supersymmetric

gauge theories. In this section we will generalize these brane configurations to construct 2d N = (0, 4)

supersymmetric gauge theories. We consider Type IIB superstring theory in Minkowski spacetime

with time coordinate x0 and space coordinates x1 , · · · , x9 . Let QL and QR be the supercharges gen-

erated by left- and right-moving world-sheet degrees of freedom. They satisfy the chirality conditions

of Type IIB superstring theory: ΓQL = QL, ΓQR = QR where Γ = Γ0 · · ·Γ9 .
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x6 , x7 , x8 , x9 ) directions, D5′-branes with world-volumes in (x0 , x1 , x3 , x4 , x5 , x6 ) directions, and

D3-branes in (x0 , x1 , x2 , x6 ) directions:
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All the branes share the (x0 , x1 ) directions. We will consider the case in which the D3-branes are

bounded by all the 5-branes in the (x2 , x6 ) directions. According to the Kaluza-Klein reduction in

these two directions, the world-volume theories on the D3-branes therefore are macroscopically two

dimensional.
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account the (0, 4) boundary conditions in subsection
subsec_04BC1
2.2.1, this leads to (0, 4) U(N) vector multiplet.

Without any matter content, (0, 4) U(N) vector multiplet is anomalous.

To obtain gauge anomaly free theory from non-periodic configuration, one can add adjacent D3-

branes in (x2 , x6 ) plane. Let nTL, nT , nTR, nL, nR, nBL, nB , nBR be the numbers of D3-branes

displaced in the neighboring infinite regions in top-left, top, top-right, left, right, bottom-left, bottom

and bottom-right (see Figure
fig_singlebox
13). From the dictionary (

dic_box
3.37) of brane box, horizontally aligned nL

and nR D3-branes introduce nL and nR (0,4) fundamental hypermultiplets, vertically aligned nT and

nB D3-branes provide nT and nB (0, 4) fundamental twisted hypermultiplets, and diagonally aligned

nTL, nTR, nb and nBR D3-branes lead to nTL, nTR, nb and nBR (0, 2) fundamental Fermi multiplets.

According to the anomaly contribution (
t_Anom2a
1.40), we find f2su(N) gauge anomaly free condition

N =
1

2
(nL + nR + nT + nB)−

1

4
(nTL + nTR + nBL + nBR). (4.1) brane_anomalry_sun

4.2 Brane ordering
subsec_04ineq

We will define a pair of net numbers of D3-branes ending on a 5-brane. One is the number of D3-

branes ending on the 5-brane from the right minus the number ending from the left while the other is

the that of D3-branes ending on the 5-brane from the top minus the number ending from the bottom.

1. Any D5-branes with non-zero net numbers of D3-branes are located on the right hand of all the

NS5-branes and any D5′-branes with non-zero net numbers of D3-branes are on the top of all

the NS5′-branes. This constraint requires that we should firstly meet the data which cannot be

described by 2d gauge theory, i.e. Nahm pole ρ : su(2) → g and reduced gauge group H. This

constraint is imposed in
Gaiotto:2008ak
[13] for NS55- and D5-branes. We impose a similar condition on NS5′-

and D5′-branes.

2. The linking numbers are nondecreasing from left to right and from bottom to top. Unless this

constraint is satisfied for D5-brane, the moduli space of solutions to Nahm equation would

involve extra decoupled 3d N = 4 hypermultiplets. As Nahm pole boundary conditions are

imposed from D5′-brane
Chung:2016pgt
[14], we also impose a similar constraint on the linking numbers of

additional 5-branes. Following the same line in
Gaiotto:2008ak
[13], this constraint on a pair of two NS5-branes

leads to conditions in (0, 4) U(N) gauge theory:

NH ≥ 2N, NT ≥ 2N (4.2) 04scft_constraint

where NH is the number of (0, 4) fundamental hypermultiplet and NT is that of (0, 4) twisted

hypermultiplets. When these conditions are obeyed at each node, the (0, 4) quiver gauge theories

will be good or balanced.
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Note that the fundamental and anti-fundamental representations have the same contributions to

the ’t Hooft anomalies. While gauge anomaly cancellation is required for consistent gauge theory,

global symmetry may be anomalous. In the IR, the current of the global symmetry of Lie algebra

f can be holomorphic or anti-holomorphic, i.e. left- or right-moving. Then the corresponding global

symmetry can be enhanced to the affine Lie algebra f̂ of level |2Af| which act in the holomorphic or

anti-holomorphic sector of the associated CFT depending on the sign of the anomaly coefficient Af.

**TODO: Check the Abelian anomalies. In
Mohri:1997ef
[11] the theories on D1-branes at singularities the

non-vanishing Abelian gauge anomalies are shown to be cancelled by a generalized Green-Schwarz

mechanism. In
Gadde:2013lxa
[12] the addition of appropriate matter cancels the non-vanishing Abelian gauge

anomalies. **

When we consider (0, 2) boundary conditions in 3d N = 2 theory, the anomaly coefficient also

receives contribution from bulk fields. They have half of the contributions as those from boundary

fields
Dimofte:2017tpi
[8]:

3d N = 2 multiplet b.c. representation ASU(N)

chiral multiplet D b.c. ! or ! 1
4

adjoint N
2

chiral multiplet N b.c. ! or ! − 1
4

adjoint −N
2

gauge multiplet N b.c. adjoint −N

gauge multiplet D b.c. adjoint N

(1.36) t_Anom2a

2 (0, 4) brane box model
subsec_d3box

2.1 Brane configurations
subsec_04susy

In
Hanany:1996ie, Gaiotto:2008ak
[13, 14] configurations of D3-branes and 5-branes were used to construct 3d N = 4 supersymmetric

gauge theories. In this section we will generalize these brane configurations to construct 2d N = (0, 4)

supersymmetric gauge theories. We consider Type IIB superstring theory in Minkowski spacetime

with time coordinate x0 and space coordinates x1 , · · · , x9 . Let QL and QR be the supercharges gen-

erated by left- and right-moving world-sheet degrees of freedom. They satisfy the chirality conditions

of Type IIB superstring theory: ΓQL = QL, ΓQR = QR where Γ = Γ0 · · ·Γ9 .

We introduce NS5-branes with world-volumes in (x0 , x1 , x2 , x3 , x4 , x5 ) directions, D5-branes

with world-volumes in (x0 , x1 , x2 , x7 , x8 , x9 ) directions, NS5′-branes with world-volumes in (x0 , x1 ,

x6 , x7 , x8 , x9 ) directions, D5′-branes with world-volumes in (x0 , x1 , x3 , x4 , x5 , x6 ) directions, and

D3-branes in (x0 , x1 , x2 , x6 ) directions:

0 1 2 3 4 5 6 7 8 9

D3 ◦ ◦ ◦ − − − ◦ − − −
NS5 ◦ ◦ ◦ ◦ ◦ ◦ − − − −
D5 ◦ ◦ ◦ − − − − ◦ ◦ ◦
NS5′ ◦ ◦ − − − − ◦ ◦ ◦ ◦
D5′ ◦ ◦ − ◦ ◦ ◦ ◦ − − −

(2.1) 04_brane1

All the branes share the (x0 , x1 ) directions. We will consider the case in which the D3-branes are

bounded by all the 5-branes in the (x2 , x6 ) directions. According to the Kaluza-Klein reduction in

these two directions, the world-volume theories on the D3-branes therefore are macroscopically two

dimensional.
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account the (0, 4) boundary conditions in subsection
subsec_04BC1
2.2.1, this leads to (0, 4) U(N) vector multiplet.

Without any matter content, (0, 4) U(N) vector multiplet is anomalous.

To obtain gauge anomaly free theory from non-periodic configuration, one can add adjacent D3-

branes in (x2 , x6 ) plane. Let nTL, nT , nTR, nL, nR, nBL, nB , nBR be the numbers of D3-branes

displaced in the neighboring infinite regions in top-left, top, top-right, left, right, bottom-left, bottom

and bottom-right (see Figure
fig_singlebox
13). From the dictionary (

dic_box
3.37) of brane box, horizontally aligned nL

and nR D3-branes introduce nL and nR (0,4) fundamental hypermultiplets, vertically aligned nT and

nB D3-branes provide nT and nB (0, 4) fundamental twisted hypermultiplets, and diagonally aligned

nTL, nTR, nb and nBR D3-branes lead to nTL, nTR, nb and nBR (0, 2) fundamental Fermi multiplets.

According to the anomaly contribution (
t_Anom2a
1.40), we find f2su(N) gauge anomaly free condition

N =
1

2
(nL + nR + nT + nB)−

1

4
(nTL + nTR + nBL + nBR). (4.1) brane_anomalry_sun

4.2 Brane ordering
subsec_04ineq

We will define a pair of net numbers of D3-branes ending on a 5-brane. One is the number of D3-

branes ending on the 5-brane from the right minus the number ending from the left while the other is

the that of D3-branes ending on the 5-brane from the top minus the number ending from the bottom.

1. Any D5-branes with non-zero net numbers of D3-branes are located on the right hand of all the

NS5-branes and any D5′-branes with non-zero net numbers of D3-branes are on the top of all

the NS5′-branes. This constraint requires that we should firstly meet the data which cannot be

described by 2d gauge theory, i.e. Nahm pole ρ : su(2) → g and reduced gauge group H. This

constraint is imposed in
Gaiotto:2008ak
[13] for NS55- and D5-branes. We impose a similar condition on NS5′-

and D5′-branes.

2. The linking numbers are nondecreasing from left to right and from bottom to top. Unless this

constraint is satisfied for D5-brane, the moduli space of solutions to Nahm equation would

involve extra decoupled 3d N = 4 hypermultiplets. As Nahm pole boundary conditions are

imposed from D5′-brane
Chung:2016pgt
[14], we also impose a similar constraint on the linking numbers of

additional 5-branes. Following the same line in
Gaiotto:2008ak
[13], this constraint on a pair of two NS5-branes

leads to conditions in (0, 4) U(N) gauge theory:

NH ≥ 2N, NT ≥ 2N (4.2) 04scft_constraint

where NH is the number of (0, 4) fundamental hypermultiplet and NT is that of (0, 4) twisted

hypermultiplets. When these conditions are obeyed at each node, the (0, 4) quiver gauge theories

will be good or balanced.

28

x345

Note that the fundamental and anti-fundamental representations have the same contributions to

the ’t Hooft anomalies. While gauge anomaly cancellation is required for consistent gauge theory,

global symmetry may be anomalous. In the IR, the current of the global symmetry of Lie algebra

f can be holomorphic or anti-holomorphic, i.e. left- or right-moving. Then the corresponding global

symmetry can be enhanced to the affine Lie algebra f̂ of level |2Af| which act in the holomorphic or

anti-holomorphic sector of the associated CFT depending on the sign of the anomaly coefficient Af.

**TODO: Check the Abelian anomalies. In
Mohri:1997ef
[11] the theories on D1-branes at singularities the

non-vanishing Abelian gauge anomalies are shown to be cancelled by a generalized Green-Schwarz

mechanism. In
Gadde:2013lxa
[12] the addition of appropriate matter cancels the non-vanishing Abelian gauge

anomalies. **

When we consider (0, 2) boundary conditions in 3d N = 2 theory, the anomaly coefficient also

receives contribution from bulk fields. They have half of the contributions as those from boundary

fields
Dimofte:2017tpi
[8]:

3d N = 2 multiplet b.c. representation ASU(N)

chiral multiplet D b.c. ! or ! 1
4

adjoint N
2

chiral multiplet N b.c. ! or ! − 1
4

adjoint −N
2

gauge multiplet N b.c. adjoint −N

gauge multiplet D b.c. adjoint N

(1.36) t_Anom2a

2 (0, 4) brane box model
subsec_d3box

2.1 Brane configurations
subsec_04susy

In
Hanany:1996ie, Gaiotto:2008ak
[13, 14] configurations of D3-branes and 5-branes were used to construct 3d N = 4 supersymmetric

gauge theories. In this section we will generalize these brane configurations to construct 2d N = (0, 4)

supersymmetric gauge theories. We consider Type IIB superstring theory in Minkowski spacetime

with time coordinate x0 and space coordinates x1 , · · · , x9 . Let QL and QR be the supercharges gen-

erated by left- and right-moving world-sheet degrees of freedom. They satisfy the chirality conditions

of Type IIB superstring theory: ΓQL = QL, ΓQR = QR where Γ = Γ0 · · ·Γ9 .

We introduce NS5-branes with world-volumes in (x0 , x1 , x2 , x3 , x4 , x5 ) directions, D5-branes

with world-volumes in (x0 , x1 , x2 , x7 , x8 , x9 ) directions, NS5′-branes with world-volumes in (x0 , x1 ,

x6 , x7 , x8 , x9 ) directions, D5′-branes with world-volumes in (x0 , x1 , x3 , x4 , x5 , x6 ) directions, and

D3-branes in (x0 , x1 , x2 , x6 ) directions:

0 1 2 3 4 5 6 7 8 9

D3 ◦ ◦ ◦ − − − ◦ − − −
NS5 ◦ ◦ ◦ ◦ ◦ ◦ − − − −
D5 ◦ ◦ ◦ − − − − ◦ ◦ ◦
NS5′ ◦ ◦ − − − − ◦ ◦ ◦ ◦
D5′ ◦ ◦ − ◦ ◦ ◦ ◦ − − −

(2.1) 04_brane1

All the branes share the (x0 , x1 ) directions. We will consider the case in which the D3-branes are

bounded by all the 5-branes in the (x2 , x6 ) directions. According to the Kaluza-Klein reduction in

these two directions, the world-volume theories on the D3-branes therefore are macroscopically two

dimensional.

8

Figure 13: Single box of N D3-branes and eight types of D3-branes with infinite extent.fig_singlebox

account the (0, 4) boundary conditions in subsection
subsec_04BC1
2.2.1, this leads to (0, 4) U(N) vector multiplet.

Without any matter content, (0, 4) U(N) vector multiplet is anomalous.

To obtain gauge anomaly free theory from non-periodic configuration, one can add adjacent D3-

branes in (x2 , x6 ) plane. Let nTL, nT , nTR, nL, nR, nBL, nB , nBR be the numbers of D3-branes

displaced in the neighboring infinite regions in top-left, top, top-right, left, right, bottom-left, bottom

and bottom-right (see Figure
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13). From the dictionary (

dic_box
3.37) of brane box, horizontally aligned nL

and nR D3-branes introduce nL and nR (0,4) fundamental hypermultiplets, vertically aligned nT and

nB D3-branes provide nT and nB (0, 4) fundamental twisted hypermultiplets, and diagonally aligned
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According to the anomaly contribution (
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branes ending on the 5-brane from the right minus the number ending from the left while the other is

the that of D3-branes ending on the 5-brane from the top minus the number ending from the bottom.

1. Any D5-branes with non-zero net numbers of D3-branes are located on the right hand of all the

NS5-branes and any D5′-branes with non-zero net numbers of D3-branes are on the top of all

the NS5′-branes. This constraint requires that we should firstly meet the data which cannot be

described by 2d gauge theory, i.e. Nahm pole ρ : su(2) → g and reduced gauge group H. This

constraint is imposed in
Gaiotto:2008ak
[13] for NS55- and D5-branes. We impose a similar condition on NS5′-

and D5′-branes.

2. The linking numbers are nondecreasing from left to right and from bottom to top. Unless this

constraint is satisfied for D5-brane, the moduli space of solutions to Nahm equation would

involve extra decoupled 3d N = 4 hypermultiplets. As Nahm pole boundary conditions are

imposed from D5′-brane
Chung:2016pgt
[14], we also impose a similar constraint on the linking numbers of

additional 5-branes. Following the same line in
Gaiotto:2008ak
[13], this constraint on a pair of two NS5-branes

leads to conditions in (0, 4) U(N) gauge theory:

NH ≥ 2N, NT ≥ 2N (4.2) 04scft_constraint

where NH is the number of (0, 4) fundamental hypermultiplet and NT is that of (0, 4) twisted

hypermultiplets. When these conditions are obeyed at each node, the (0, 4) quiver gauge theories

will be good or balanced.
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Figure 13: Single box of N D3-branes and eight types of D3-branes with infinite extent.fig_singlebox
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Note that the fundamental and anti-fundamental representations have the same contributions to

the ’t Hooft anomalies. While gauge anomaly cancellation is required for consistent gauge theory,

global symmetry may be anomalous. In the IR, the current of the global symmetry of Lie algebra

f can be holomorphic or anti-holomorphic, i.e. left- or right-moving. Then the corresponding global

symmetry can be enhanced to the affine Lie algebra f̂ of level |2Af| which act in the holomorphic or

anti-holomorphic sector of the associated CFT depending on the sign of the anomaly coefficient Af.

**TODO: Check the Abelian anomalies. In
Mohri:1997ef
[11] the theories on D1-branes at singularities the

non-vanishing Abelian gauge anomalies are shown to be cancelled by a generalized Green-Schwarz

mechanism. In
Gadde:2013lxa
[12] the addition of appropriate matter cancels the non-vanishing Abelian gauge

anomalies. **

When we consider (0, 2) boundary conditions in 3d N = 2 theory, the anomaly coefficient also

receives contribution from bulk fields. They have half of the contributions as those from boundary

fields
Dimofte:2017tpi
[8]:

3d N = 2 multiplet b.c. representation ASU(N)

chiral multiplet D b.c. ! or ! 1
4

adjoint N
2

chiral multiplet N b.c. ! or ! − 1
4

adjoint −N
2

gauge multiplet N b.c. adjoint −N

gauge multiplet D b.c. adjoint N

(1.36) t_Anom2a

2 (0, 4) brane box model
subsec_d3box

2.1 Brane configurations
subsec_04susy

In
Hanany:1996ie, Gaiotto:2008ak
[13, 14] configurations of D3-branes and 5-branes were used to construct 3d N = 4 supersymmetric

gauge theories. In this section we will generalize these brane configurations to construct 2d N = (0, 4)

supersymmetric gauge theories. We consider Type IIB superstring theory in Minkowski spacetime

with time coordinate x0 and space coordinates x1 , · · · , x9 . Let QL and QR be the supercharges gen-

erated by left- and right-moving world-sheet degrees of freedom. They satisfy the chirality conditions

of Type IIB superstring theory: ΓQL = QL, ΓQR = QR where Γ = Γ0 · · ·Γ9 .

We introduce NS5-branes with world-volumes in (x0 , x1 , x2 , x3 , x4 , x5 ) directions, D5-branes

with world-volumes in (x0 , x1 , x2 , x7 , x8 , x9 ) directions, NS5′-branes with world-volumes in (x0 , x1 ,

x6 , x7 , x8 , x9 ) directions, D5′-branes with world-volumes in (x0 , x1 , x3 , x4 , x5 , x6 ) directions, and

D3-branes in (x0 , x1 , x2 , x6 ) directions:

0 1 2 3 4 5 6 7 8 9

D3 ◦ ◦ ◦ − − − ◦ − − −
NS5 ◦ ◦ ◦ ◦ ◦ ◦ − − − −
D5 ◦ ◦ ◦ − − − − ◦ ◦ ◦
NS5′ ◦ ◦ − − − − ◦ ◦ ◦ ◦
D5′ ◦ ◦ − ◦ ◦ ◦ ◦ − − −

(2.1) 04_brane1

All the branes share the (x0 , x1 ) directions. We will consider the case in which the D3-branes are

bounded by all the 5-branes in the (x2 , x6 ) directions. According to the Kaluza-Klein reduction in

these two directions, the world-volume theories on the D3-branes therefore are macroscopically two

dimensional.
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Note that the fundamental and anti-fundamental representations have the same contributions to

the ’t Hooft anomalies. While gauge anomaly cancellation is required for consistent gauge theory,
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f can be holomorphic or anti-holomorphic, i.e. left- or right-moving. Then the corresponding global

symmetry can be enhanced to the affine Lie algebra f̂ of level |2Af| which act in the holomorphic or
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Gadde:2013lxa
[12] the addition of appropriate matter cancels the non-vanishing Abelian gauge

anomalies. **
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The half-index for NS5′-type interface between U(4) gauge theory and U(1) gauge theory is
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(1.28) 4du4u1_hindex

This coincides with the half-index for D5-type interface between U(1) and U(4) gauge theories:
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The half-indices (
4du4u1_hindex
1.28) and (
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1.29) are expressed as
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This will coincide with the half-index for D5-type interface between U(1) and U(N) gauge theories:
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For N < M the quarter index for
(
0 | N
M

)
Y-junction which leads to the VOA YM,0 ,N is given by

IV
(
0 | N
M

)

N ′D =
1

M !

(q)M∞
(q

1
2 t2 ; q)M∞

∮ M∏

i=1

dsi
2πisi

∏

i ̸=j

(
si
sj
; q
)

∞(
q

1
2 t2 si

sj
; q
)

∞︸ ︷︷ ︸
II4d U(M)

N ′

×
N∏

k=1

1

(q
k
2 t2k; q)∞

︸ ︷︷ ︸
IV4d U(N)

N ′D

M∏

i=1

(
q

3
4+

N− 1
4 tN)si; q

)

∞

(
q

3
4+

N− 1
4 tNs−1

i ; q
)

∞
(3.58) yM0Nt

This will coincide with the quarter index for
(
N | M

0

)
Y-junction of the VOA Y0 ,N,M :

IV
(
N | M

0

)

N ′D =
1

N !

(q)N∞
(q

1
2 t2 ; q)N∞

∮ N∏

i=1

dsi
2πisi

∏

i ̸=j

(
si
sj
; q
)

∞(
q

1
2 t2 si

sj
; q
)

∞︸ ︷︷ ︸
II4d U(N)

N ′

×
M−N∏

i=1

1

(q
k
2 t2k; q)∞

︸ ︷︷ ︸
IV4d U(M − N)

N ′D

N∏

i=1

1(
q

1
4+

M− N
4 t1+M−Nsi; q

)

∞

(
q

1
4+

M− N
4 t1+M−Ns−1

i ; q
)

∞

. (3.59) y0NMt

4 Abelian (0 , 4) mirrors
sec_abelian

4.1 Boundary anomaly
sec_bdyanomaly

The boundary anomaly polynomial for 3d N = 4 U(Nc) SQCD with Nf fundamental hypermultiplets

obeying (N , N) boundary condition is

I(Nc)−[Nf ]
(N ,N) = 2Nc Tr(s

2 )− 2(Tr s)2︸ ︷︷ ︸
N of U(Nc) gaugino

+2(Tr s) · s̃︸ ︷︷ ︸
FI term

−Nc Tr(x
2 )−Nf Tr(s

2 )
︸ ︷︷ ︸

N of hyper

= (2Nc −Nf ) Tr(s
2 )−Nc Tr(x

2 ) + 2(Tr s) · [−(Tr s) + s̃] . (4.1) ncnf_AN

The boundary anomaly polynomial for 3d N = 4
∏n

i U(Ni) linear quiver gauge theory with bi-

fundamental hypermultiplets obeying (N , N) boundary conditions is

I(N1 )−(N2 )−···(Nn)
(N ,N) =

n∑

i=1

[
2Ni Tr(s

2
i )− 2(Tr si)

2 + 2(Tr si) · s̃i
]

︸ ︷︷ ︸
N of U(N)i gaugino + FI

+
n−1∑

i=1

[
−Ni+1 Tr(s

2
i )−Ni Tr(s

2
i+1)− (Ni+1 Tr si −Ni Tr si+1)

2
]

︸ ︷︷ ︸
N of bi-fundamental hypers

= (2N1 −N2 ) Tr(s
2
1) + (Tr s1) ·

[
−(N 2

2 + 2)(Tr s1) +N1N2 Tr s2 + 2s̃1
]

+
n−1∑

i=2

(2Ni −Ni−1 −Ni+1) Tr(s
2
i ) + (Tr si) ·

[
−(N 2

i−1 +N 2
i+1 + 2)(Tr si) +NiNi−1 Tr si−1 +NiNi+1 Tr si+1 + 2s̃i

]

+ (2Nn −Nn−1) Tr s
2
n + (Tr sn) ·

[
−(N 2

n−1 + 2)(Tr sn) +NnNn−1 Tr sn−1 + 2s̃n
]
. (4.2) quiver_N_AN

In order to have consistent Neumann boundary condition for gauge field, the gauge anomaly must be

cancelled.
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take the form:

IV
(
M | N

L

)

N ′D =
1

L!

(q)L∞
(q

1
2 t2 ; q)L∞

∮ L∏

i=1

dsi
2πisi

∏

i ̸=j

(
si
sj
; q
)

∞(
q

1
2 t2 si

sj
; q
)

∞︸ ︷︷ ︸
II4d U(L)

N ′

×
L∏

i=1

(
q

3
4+

N− 1
4 tN)si; q

)

∞

(
q

3
4+

N− 1
4 tNs−1

i ; q
)

∞

×
N−M∏

k=1

1

(q
k
2 t2k; q)∞

︸ ︷︷ ︸
IV4d U(N − M)

N ′D

× 1

M !

(q)M∞
(q

1
2 t2 ; q)M∞

∮ L+M∏

i=L+1

dsi
2πisi

∏

i ̸=j

(
si
sj
; q
)

∞(
q

1
2 t2 si

sj
; q
)

∞︸ ︷︷ ︸
II4d U(M)

N ′

×
L+M∏

i=L+1

1(
q

1
4+

N− M
4 t1+N−Msi; q

)

∞

(
q

1
4+

N− M
4 t1+N−Ms−1

i ; q
)

∞

(3.60) yLMNt

4 Abelian (0 , 4) mirrors
sec_abelian

4.1 Boundary anomaly
sec_bdyanomaly

The boundary anomaly polynomial for 3d N = 4 U(Nc) SQCD with Nf fundamental hypermultiplets

obeying (N , N) boundary condition is

I(Nc)−[Nf ]
(N ,N) = 2Nc Tr(s

2 )− 2(Tr s)2︸ ︷︷ ︸
N of U(Nc) gaugino

+2(Tr s) · s̃︸ ︷︷ ︸
FI term

−Nc Tr(x
2 )−Nf Tr(s

2 )
︸ ︷︷ ︸

N of hyper

= (2Nc −Nf ) Tr(s
2 )−Nc Tr(x

2 ) + 2(Tr s) · [−(Tr s) + s̃] . (4.1) ncnf_AN

The boundary anomaly polynomial for 3d N = 4
∏n

i U(Ni) linear quiver gauge theory with bi-

fundamental hypermultiplets obeying (N , N) boundary conditions is

I(N1 )−(N2 )−···(Nn)
(N ,N) =

n∑

i=1

[
2Ni Tr(s

2
i )− 2(Tr si)

2 + 2(Tr si) · s̃i
]

︸ ︷︷ ︸
N of U(N)i gaugino + FI

+
n−1∑

i=1

[
−Ni+1 Tr(s

2
i )−Ni Tr(s

2
i+1)− (Ni+1 Tr si −Ni Tr si+1)

2
]

︸ ︷︷ ︸
N of bi-fundamental hypers

= (2N1 −N2 ) Tr(s
2
1) + (Tr s1) ·

[
−(N 2

2 + 2)(Tr s1) +N1N2 Tr s2 + 2s̃1
]

+
n−1∑

i=2

(2Ni −Ni−1 −Ni+1) Tr(s
2
i ) + (Tr si) ·

[
−(N 2

i−1 +N 2
i+1 + 2)(Tr si) +NiNi−1 Tr si−1 +NiNi+1 Tr si+1 + 2s̃i

]

+ (2Nn −Nn−1) Tr s
2
n + (Tr sn) ·

[
−(N 2

n−1 + 2)(Tr sn) +NnNn−1 Tr sn−1 + 2s̃n
]
. (4.2) quiver_N_AN

In order to have consistent Neumann boundary condition for gauge field, the gauge anomaly must be

cancelled.
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Note that the fundamental and anti-fundamental representations have the same contributions to

the ’t Hooft anomalies. While gauge anomaly cancellation is required for consistent gauge theory,

global symmetry may be anomalous. In the IR, the current of the global symmetry of Lie algebra

f can be holomorphic or anti-holomorphic, i.e. left- or right-moving. Then the corresponding global

symmetry can be enhanced to the affine Lie algebra f̂ of level |2Af| which act in the holomorphic or

anti-holomorphic sector of the associated CFT depending on the sign of the anomaly coefficient Af.

**TODO: Check the Abelian anomalies. In
Mohri:1997ef
[11] the theories on D1-branes at singularities the

non-vanishing Abelian gauge anomalies are shown to be cancelled by a generalized Green-Schwarz

mechanism. In
Gadde:2013lxa
[12] the addition of appropriate matter cancels the non-vanishing Abelian gauge

anomalies. **

When we consider (0, 2) boundary conditions in 3d N = 2 theory, the anomaly coefficient also

receives contribution from bulk fields. They have half of the contributions as those from boundary

fields
Dimofte:2017tpi
[8]:

3d N = 2 multiplet b.c. representation ASU(N)

chiral multiplet D b.c. ! or ! 1
4

adjoint N
2

chiral multiplet N b.c. ! or ! − 1
4

adjoint −N
2

gauge multiplet N b.c. adjoint −N

gauge multiplet D b.c. adjoint N

(1.36) t_Anom2a

2 (0 , 4) brane box model
subsec_d3box

2.1 Brane configurations
subsec_04susy

In
Hanany:1996ie, Gaiotto:2008ak
[13, 14] configurations of D3-branes and 5-branes were used to construct 3d N = 4 supersymmetric

gauge theories. In this section we will generalize these brane configurations to construct 2d N = (0, 4)

supersymmetric gauge theories. We consider Type IIB superstring theory in Minkowski spacetime

with time coordinate x0 and space coordinates x1 , · · · , x9 . Let QL and QR be the supercharges gen-

erated by left- and right-moving world-sheet degrees of freedom. They satisfy the chirality conditions

of Type IIB superstring theory: ΓQL = QL, ΓQR = QR where Γ = Γ0 · · ·Γ9 .

We introduce NS5-branes with world-volumes in (x0 , x1 , x2 , x3 , x4 , x5 ) directions, D5-branes

with world-volumes in (x0 , x1 , x2 , x7 , x8 , x9 ) directions, NS5′-branes with world-volumes in (x0 , x1 ,

x6 , x7 , x8 , x9 ) directions, D5′-branes with world-volumes in (x0 , x1 , x3 , x4 , x5 , x6 ) directions, and

D3-branes in (x0 , x1 , x2 , x6 ) directions:

0 1 2 3 4 5 6 7 8 9

D3 ◦ ◦ ◦ − − − ◦ − − −
NS5 ◦ ◦ ◦ ◦ ◦ ◦ − − − −
D5 ◦ ◦ ◦ − − − − ◦ ◦ ◦
NS5′ ◦ ◦ − − − − ◦ ◦ ◦ ◦
D5′ ◦ ◦ − ◦ ◦ ◦ ◦ − − −

(2.1) 04_brane1

All the branes share the (x0 , x1 ) directions. We will consider the case in which the D3-branes are

bounded by all the 5-branes in the (x2 , x6 ) directions. According to the Kaluza-Klein reduction in

these two directions, the world-volume theories on the D3-branes therefore are macroscopically two

dimensional.

8

Note that the fundamental and anti-fundamental representations have the same contributions to

the ’t Hooft anomalies. While gauge anomaly cancellation is required for consistent gauge theory,

global symmetry may be anomalous. In the IR, the current of the global symmetry of Lie algebra

f can be holomorphic or anti-holomorphic, i.e. left- or right-moving. Then the corresponding global

symmetry can be enhanced to the affine Lie algebra f̂ of level |2Af| which act in the holomorphic or

anti-holomorphic sector of the associated CFT depending on the sign of the anomaly coefficient Af.

**TODO: Check the Abelian anomalies. In
Mohri:1997ef
[11] the theories on D1-branes at singularities the

non-vanishing Abelian gauge anomalies are shown to be cancelled by a generalized Green-Schwarz

mechanism. In
Gadde:2013lxa
[12] the addition of appropriate matter cancels the non-vanishing Abelian gauge

anomalies. **

When we consider (0, 2) boundary conditions in 3d N = 2 theory, the anomaly coefficient also

receives contribution from bulk fields. They have half of the contributions as those from boundary

fields
Dimofte:2017tpi
[8]:

3d N = 2 multiplet b.c. representation ASU(N)

chiral multiplet D b.c. ! or ! 1
4

adjoint N
2

chiral multiplet N b.c. ! or ! − 1
4

adjoint −N
2

gauge multiplet N b.c. adjoint −N

gauge multiplet D b.c. adjoint N

(1.36) t_Anom2a

2 (0 , 4) brane box model
subsec_d3box

2.1 Brane configurations
subsec_04susy

In
Hanany:1996ie, Gaiotto:2008ak
[13, 14] configurations of D3-branes and 5-branes were used to construct 3d N = 4 supersymmetric

gauge theories. In this section we will generalize these brane configurations to construct 2d N = (0, 4)

supersymmetric gauge theories. We consider Type IIB superstring theory in Minkowski spacetime

with time coordinate x0 and space coordinates x1 , · · · , x9 . Let QL and QR be the supercharges gen-

erated by left- and right-moving world-sheet degrees of freedom. They satisfy the chirality conditions

of Type IIB superstring theory: ΓQL = QL, ΓQR = QR where Γ = Γ0 · · ·Γ9 .

We introduce NS5-branes with world-volumes in (x0 , x1 , x2 , x3 , x4 , x5 ) directions, D5-branes

with world-volumes in (x0 , x1 , x2 , x7 , x8 , x9 ) directions, NS5′-branes with world-volumes in (x0 , x1 ,

x6 , x7 , x8 , x9 ) directions, D5′-branes with world-volumes in (x0 , x1 , x3 , x4 , x5 , x6 ) directions, and

D3-branes in (x0 , x1 , x2 , x6 ) directions:

0 1 2 3 4 5 6 7 8 9

D3 ◦ ◦ ◦ − − − ◦ − − −
NS5 ◦ ◦ ◦ ◦ ◦ ◦ − − − −
D5 ◦ ◦ ◦ − − − − ◦ ◦ ◦
NS5′ ◦ ◦ − − − − ◦ ◦ ◦ ◦
D5′ ◦ ◦ − ◦ ◦ ◦ ◦ − − −

(2.1) 04_brane1

All the branes share the (x0 , x1 ) directions. We will consider the case in which the D3-branes are

bounded by all the 5-branes in the (x2 , x6 ) directions. According to the Kaluza-Klein reduction in

these two directions, the world-volume theories on the D3-branes therefore are macroscopically two

dimensional.

8

The half-index for NS5′-type interface between U(4) gauge theory and U(1) gauge theory is

II4d U(4)|U(1)
N ′ =

1

4!

(q)4∞
(q

1
2 t2; q)4∞

∮ 4∏

i=1

dsi
2πisi

∏

i ̸=j

(
si
sj
; q
)

∞(
q

1
2 t2 si

sj
; q
)

∞︸ ︷︷ ︸
II4d U(4)

N ′

(q)∞

(q
1
2 t2; q)∞

∮
ds5
2πis5︸ ︷︷ ︸

II4d U(1)

N ′

4∏

i=1

(
q

3
4 t sis5 ; q

)

∞

(
q

3
4 t s5si ; q

)

∞(
q

1
4 t−1 si

s5
; q
)

∞

(
q

1
4 t−1 s5

si
; q
)

∞︸ ︷︷ ︸
I3d tHM

(
si
s5

)

(1.28) 4du4u1_hindex

This coincides with the half-index for D5-type interface between U(1) and U(4) gauge theories:

II4d U(1)|U(4)
D =

(q)2∞
(q

1
2 t2; q)∞(q

1
2 t−2; q)∞

∮
ds

2πis
︸ ︷︷ ︸

I4d U(1)

(q)∞(q
3
2 t2; q)∞(q2t4; q)∞

(q
1
2 t2; q)∞(qt4; q)∞(q

3
2 t6 ; q)∞︸ ︷︷ ︸

II4d U(3)
Nahm

(q
3
2 t2s; q)∞(q

3
2 t2s−1; q)∞

(qt4s; q)∞(qt4s−1; q)∞

(1.29) 4du4u1_hindex2

The half-indices (
4du4u1_hindex
1.28) and (

4du4u1_hindex2
1.29) are expressed as

II4d U(4)|U(1)
N ′ = II4d U(1)|U(4)

D

=
(q)∞(q

3
2 t2; q)∞(q2t4; q)∞

(q
1
2 t2; q)∞(qt4; q)∞(q

3
2 t6 ; q)∞

∞∑

n=0

q
n
2 t−2n (q1+n; q)∞(q

5
2 +nt6 ; q)∞

(q
1
2 +nt2; q)∞(q2+nt8 ; q)∞

(1.30) 4du4u1_hindex3

The half-index for NS5′-type interface between U(N) gauge theory and U(1) gauge theory is

II4d U(N)|U(1)
N ′ =

1

N !

(q)N∞
(q

1
2 t2; q)N∞

∮ N∏

i=1

dsi
2πisi

∏

i ̸=j

(
si
sj
; q
)

∞(
q

1
2 t2 si

sj
; q
)

∞︸ ︷︷ ︸
II4d U(4)

N ′

(q)∞

(q
1
2 t2; q)∞

∮
dsN+1

2πisN+1︸ ︷︷ ︸
II4d U(1)

N ′

N∏

i=1

(
q

3
4 t si

sN+1
; q
)

∞

(
q

3
4 t sN+1

si
; q
)

∞(
q

1
4 t−1 si

sN+1
; q
)

∞

(
q

1
4 t−1 sN+1

si
; q
)

∞︸ ︷︷ ︸
I3d tHM

(
si

sN+1

)

(1.31) 4duNu1_hindex

This will coincide with the half-index for D5-type interface between U(1) and U(N) gauge theories:

II4d U(1)|U(N)
D =

(q)2∞
(q

1
2 t2; q)∞(q

1
2 t−2; q)∞

∮
ds

2πis
︸ ︷︷ ︸

I4d U(1)

N−1∏

k=1

(q
k+1
2 t2(k−1); q)∞

(q
k
2 t2k; q)∞

︸ ︷︷ ︸
II4d U(N − 1)

Nahm

(q
N
2

+1

2 t2(
N
2 −1)s; q)∞(q

N
2

+1

2 t2(
N
2 −1)s−1; q)∞

(q
N
2
2 t2·

N
2 s; q)∞(q

N
2
2 t2·

N
2 s−1; q)∞

(1.32) 4duNu1_hindex2

The half-indices (
4du4u1_hindex
1.28) and (

4du4u1_hindex2
1.29) will be expressed as

II4d U(N)|U(1)
N ′ = II4d U(1)|U(N)

D

=
N−1∏

k=1

(q
k+1
2 t2(k−1); q)∞

(q
k
2 t2k; q)∞

︸ ︷︷ ︸
II4d U(N − 1)

Nahm

∞∑

n=0

q
n
2 t−2n (q

1+n; q)∞(q
N+1

2 +nt2(N−1); q)∞

(q
1
2 +nt2; q)∞(q

N
2 +nt2N ; q)∞

(1.33) 4duNu1_hindex3
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For N < M the quarter index for
(
0 | N
M

)
Y-junction which leads to the VOA YM,0 ,N is given by

IV
(
0 | N
M

)

N ′D =
1

M !

(q)M∞
(q

1
2 t2 ; q)M∞

∮ M∏

i=1

dsi
2πisi

∏

i ̸=j

(
si
sj
; q
)

∞(
q

1
2 t2 si

sj
; q
)

∞︸ ︷︷ ︸
II4d U(M)

N ′

×
N∏

k=1

1

(q
k
2 t2k; q)∞

︸ ︷︷ ︸
IV4d U(N)

N ′D

M∏

i=1

(
q

3
4+

N− 1
4 tN)si; q

)

∞

(
q

3
4+

N− 1
4 tNs−1

i ; q
)

∞
(3.58) yM0Nt

This will coincide with the quarter index for
(
N | M

0

)
Y-junction of the VOA Y0 ,N,M :

IV
(
N | M

0

)

N ′D =
1

N !

(q)N∞
(q

1
2 t2 ; q)N∞

∮ N∏

i=1

dsi
2πisi

∏

i ̸=j

(
si
sj
; q
)

∞(
q

1
2 t2 si

sj
; q
)

∞︸ ︷︷ ︸
II4d U(N)

N ′

×
M−N∏

i=1

1

(q
k
2 t2k; q)∞

︸ ︷︷ ︸
IV4d U(M − N)

N ′D

N∏

i=1

1(
q

1
4+

M− N
4 t1+M−Nsi; q

)

∞

(
q

1
4+

M− N
4 t1+M−Ns−1

i ; q
)

∞

. (3.59) y0NMt

4 Abelian (0 , 4) mirrors
sec_abelian

4.1 Boundary anomaly
sec_bdyanomaly

The boundary anomaly polynomial for 3d N = 4 U(Nc) SQCD with Nf fundamental hypermultiplets

obeying (N , N) boundary condition is

I(Nc)−[Nf ]
(N ,N) = 2Nc Tr(s

2 )− 2(Tr s)2︸ ︷︷ ︸
N of U(Nc) gaugino

+2(Tr s) · s̃︸ ︷︷ ︸
FI term

−Nc Tr(x
2 )−Nf Tr(s

2 )
︸ ︷︷ ︸

N of hyper

= (2Nc −Nf ) Tr(s
2 )−Nc Tr(x

2 ) + 2(Tr s) · [−(Tr s) + s̃] . (4.1) ncnf_AN

The boundary anomaly polynomial for 3d N = 4
∏n

i U(Ni) linear quiver gauge theory with bi-

fundamental hypermultiplets obeying (N , N) boundary conditions is

I(N1 )−(N2 )−···(Nn)
(N ,N) =

n∑

i=1

[
2Ni Tr(s

2
i )− 2(Tr si)

2 + 2(Tr si) · s̃i
]

︸ ︷︷ ︸
N of U(N)i gaugino + FI

+
n−1∑

i=1

[
−Ni+1 Tr(s

2
i )−Ni Tr(s

2
i+1)− (Ni+1 Tr si −Ni Tr si+1)

2
]

︸ ︷︷ ︸
N of bi-fundamental hypers

= (2N1 −N2 ) Tr(s
2
1) + (Tr s1) ·

[
−(N 2

2 + 2)(Tr s1) +N1N2 Tr s2 + 2s̃1
]

+
n−1∑

i=2

(2Ni −Ni−1 −Ni+1) Tr(s
2
i ) + (Tr si) ·

[
−(N 2

i−1 +N 2
i+1 + 2)(Tr si) +NiNi−1 Tr si−1 +NiNi+1 Tr si+1 + 2s̃i

]

+ (2Nn −Nn−1) Tr s
2
n + (Tr sn) ·

[
−(N 2

n−1 + 2)(Tr sn) +NnNn−1 Tr sn−1 + 2s̃n
]
. (4.2) quiver_N_AN

In order to have consistent Neumann boundary condition for gauge field, the gauge anomaly must be

cancelled.
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take the form:

IV
(
M | N

L

)

N ′D =
1

L!

(q)L∞
(q

1
2 t2 ; q)L∞

∮ L∏

i=1

dsi
2πisi

∏

i ̸=j

(
si
sj
; q
)

∞(
q

1
2 t2 si

sj
; q
)

∞︸ ︷︷ ︸
II4d U(L)

N ′

×
L∏

i=1

(
q

3
4+

N− 1
4 tN)si; q

)

∞

(
q

3
4+

N− 1
4 tNs−1

i ; q
)

∞

×
N−M∏

k=1

1

(q
k
2 t2k; q)∞

︸ ︷︷ ︸
IV4d U(N − M)

N ′D

× 1

M !

(q)M∞
(q

1
2 t2 ; q)M∞

∮ L+M∏

i=L+1

dsi
2πisi

∏

i ̸=j

(
si
sj
; q
)

∞(
q

1
2 t2 si

sj
; q
)

∞︸ ︷︷ ︸
II4d U(M)

N ′

×
L+M∏

i=L+1

1(
q

1
4+

N− M
4 t1+N−Msi; q

)

∞

(
q

1
4+

N− M
4 t1+N−Ms−1

i ; q
)

∞

(3.60) yLMNt

4 Abelian (0 , 4) mirrors
sec_abelian

4.1 Boundary anomaly
sec_bdyanomaly

The boundary anomaly polynomial for 3d N = 4 U(Nc) SQCD with Nf fundamental hypermultiplets

obeying (N , N) boundary condition is

I(Nc)−[Nf ]
(N ,N) = 2Nc Tr(s

2 )− 2(Tr s)2︸ ︷︷ ︸
N of U(Nc) gaugino

+2(Tr s) · s̃︸ ︷︷ ︸
FI term

−Nc Tr(x
2 )−Nf Tr(s

2 )
︸ ︷︷ ︸

N of hyper

= (2Nc −Nf ) Tr(s
2 )−Nc Tr(x

2 ) + 2(Tr s) · [−(Tr s) + s̃] . (4.1) ncnf_AN

The boundary anomaly polynomial for 3d N = 4
∏n

i U(Ni) linear quiver gauge theory with bi-

fundamental hypermultiplets obeying (N , N) boundary conditions is

I(N1 )−(N2 )−···(Nn)
(N ,N) =

n∑

i=1

[
2Ni Tr(s

2
i )− 2(Tr si)

2 + 2(Tr si) · s̃i
]

︸ ︷︷ ︸
N of U(N)i gaugino + FI

+
n−1∑

i=1

[
−Ni+1 Tr(s

2
i )−Ni Tr(s

2
i+1)− (Ni+1 Tr si −Ni Tr si+1)

2
]

︸ ︷︷ ︸
N of bi-fundamental hypers

= (2N1 −N2 ) Tr(s
2
1) + (Tr s1) ·

[
−(N 2

2 + 2)(Tr s1) +N1N2 Tr s2 + 2s̃1
]

+
n−1∑

i=2

(2Ni −Ni−1 −Ni+1) Tr(s
2
i ) + (Tr si) ·

[
−(N 2

i−1 +N 2
i+1 + 2)(Tr si) +NiNi−1 Tr si−1 +NiNi+1 Tr si+1 + 2s̃i

]

+ (2Nn −Nn−1) Tr s
2
n + (Tr sn) ·

[
−(N 2

n−1 + 2)(Tr sn) +NnNn−1 Tr sn−1 + 2s̃n
]
. (4.2) quiver_N_AN

In order to have consistent Neumann boundary condition for gauge field, the gauge anomaly must be

cancelled.
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of YL,M,N [Ψ].

3.3.1 Y0,0,N and YN,0,0
sec_y00N

Consider the
(
0 | 1
0

)
Y-junction. This is the simplest Y-junction where a single D3-brane fills in the

upper right quadrant of the plane. This corresponds to the VOA Y0,0,1 = ĝl(1) Kac-Moody algebra.

The quarter index for
(
0 | 1
0

)
Y-junction is simply

IV
(
0 | 1
0

)

N ′D = IV4d U(1)
N ′D =

1

(q
1
2 t2; q)∞

, (3.65) y001t

that is the quarter index (
qindex_u1n’d
1.23) for 4d N = 4 U(1) gauge theory with a pair of boundary conditions

N ′ and D.

Another inequivalent Y-junction which is obtained under the S-duality is the
(
0 | 0
1

)
Y-junction

associated with VOA Y1,0,0. It has the 4d N = 4 U(1) gauge theory in a half-space x2 < 0 obeying

the Neumann boundary condition N ′ at x2 = 0. According to the (1, 1) fivebrane in x6 < 0, the

boundary condition is deformed by an unit of Chern-Simons coupling that leads to the 2d gauge

anomaly at the juntion. Such gauge anomaly will be cancelled by the charged Fermi multiplet living

at the junction.

Then the quarter index for the
(
0 | 0
1

)
Y-junction can be evaluated as

IV
(
0 | 0
1

)

N ′D =
(q)∞

(q
1
2 t2; q)∞

∮
ds

2πis
︸ ︷︷ ︸

II4d U(1)

N ′

(q
1
2 s; q)∞(q

1
2 s−1; q)∞︸ ︷︷ ︸

F (q
1
2 s)

=
(q)∞

(q
1
2 t2; q)∞

∮
ds

2πis

1

(q)∞

∑

n∈Z
(−1)nq

n2

2 sn

=
1

(q
1
2 t2; q)∞

(3.66) y100t

This agrees with the quarter-index (
y001t
3.65) for the

(
0 | 1
0

)
Y-junction.

The Wilson line Wn leads to a projection onto corner operators of gauge charge −n. The quarter-

index of the
(
0 | 0
1

)
Y-junction with the Wilson line Wn takes the form

IV
(
0 | 0
1

)

N ′D+Wn
=

(q)∞

(q
1
2 t2; q)∞

∮
ds

2πis
︸ ︷︷ ︸

II4d U(1)

N ′

(q
1
2 s; q)∞(q

1
2 s−1; q)∞︸ ︷︷ ︸

F (q
1
2 s)

sn

=
(−1)nq

n2

2

(q
1
2 t2; q)∞

= (−1)nq
n2

2 IV
(
0 | 1
0

)

N ′D . (3.67) y100twilson

Let us consider the
(
0 | 2
0

)
Y-junction. This is the Y-junction in which only two D3-branes live

at the upper right quadrant of the plane. This corresponds to the VOA Y0,0,2 = W2 algebra. The

quarter index for the
(
0 | 2
0

)
Y-junction is the quarter-index for 4d N = 4 U(2) gauge theory with a

pair of boundary conditions N ′ and D.

IV
(
0 | 2
0

)

N ′D = IV4d U(2)
N ′D =

1

(q
1
2 t2; q)∞(qt4; q)∞

(3.68) y002t
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ਤ 4 Y-δϟϯΫγϣϯɻίʔφʔ VOA͸ YL,M,N ͱͳΔɻɻ

͜ͷ৔߹ʹ IIBܕ௒ݭཧ࿦ͷ S૒ରੑ͸ 3ͭͷҟͳΔήʔδཧ࿦഑ҐʹରԠ͢Δඇࣗ໌ͳ trialityରশੑΛ

ಋ͘ɻຊڀݚ͸࿦จ [6]ʹ·ͱΊΒΕ͍ͯΔɻ
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3 Nݩ3࣍ = 4௒ରশήʔδཧ࿦ͷϛϥʔରশੑͱ Nݩ4࣍ = 4௒ରশ

ήʔδཧ࿦ͷ S૒ରੑͷূݕ

ݩ3࣍ N = 4௒ରশήʔδཧ࿦͸ Higgsࢬͱ Coulombࢬͱݺ͹ΕΔ 2ͭͷ hyperkählerଟ༷ମ͔Βߏ੒

͞ΕΔ௒ରশਅۭͷϞδϡϥΠۭؒΛ͍࣋ͬͯΔɻ3࣍ݩ N = 4௒ରশήʔδཧ࿦ʹ͸ϛϥʔରশੑͱݺ͹

ΕΔ૒ରੑ͕ଘ͢ࡏΔ͜ͱ͕஌ΒΕ͓ͯΓɺ͜ͷ૒ରੑ͸શ͘ҟͳΔࢵ֎ྖҬهड़Λ࣋ͭ͋Δ 2ͭͷཧ࿦ͷ૊

ʹରͯ͠ Higgsࢬͱ CoulombࢬΛަ͠׵ɺಉ࣌ʹ FIύϥϝʔλͱ massύϥϝʔλΛަ͢׵Δͱ੺֎ྖҬ

Ͱ౳ՁʹͳΔͱ͍͏૒ରੑͰ͋ΔɻHiggsࢬͰ͸ήʔδରশੑ͕׬શʹഁΕͯྔิࢠਖ਼ʹΑͬͯӨڹΛड͚ͳ

͍ɻҰํͰ CoulombࢬͰ͸ήʔδରশੑ͕ͦͷۃେτʔϥεʹഁΕͯઁಈతྔิࢠਖ਼ʹՃ͑ͯϞϊϙʔϧԋ

ਖ਼Λड͚ΔɻैͬͯิࢠΑΔඇઁಈతྔʹࢠࢉ Coulombࢬͷཧղ͸ HiggsࢬΑΓ΋Ұൠʹ೉͍͕͠ɺۙ࠷ͷ

෺ཧֶͷڀݚ [7]ͱ਺ֶͷڀݚ [8, 9] Ͱͦͷهड़͕༩͑ΒΕͨɻ3࣍ݩN = 4௒ରশήʔδཧ࿦͸ IIBܕ௒ݭ

ཧ࿦ͷϒϨʔϯߏ੒ʹ͓͍࣮ͯݱՄೳͰ͋Γɺϛϥʔରশੑ͸ IIBܕ௒ݭཧ࿦ͷ S૒ରੑͱͯ͠ཧղ͞ΕΔɻ

͜ͷϒϨʔϯߏ੒ʹ͓͚Δ S૒ରੑ͸͞Βʹ ݩ4࣍ N = 4௒ରশήʔδཧ࿦ͷ half-BPSڥք৚݅ͷ૒ରੑ

ʹ֦ு͞ΕΔ [10, 11]ɻࢲ͸ ݩ3࣍ N = 4௒ରশήʔδཧ࿦ͷ௒ࢦܗڞ਺ͱ [6]Ͱಋೖ͞Εͨ ݩ4࣍ N = 4

௒ରশήʔδཧ࿦ͷ halfࢦ਺Λ͢ࢉܭΔ͜ͱʹΑͬͯ ݩ4࣍ N = 4௒ରশήʔδཧ࿦ͷ half-BPSڥք৚݅

ͷ૒ରੑͱ ݩ3࣍ N = 4௒ରশήʔδཧ࿦ͷϛϥʔରশੑΛͨ͠ূݕ (ྫͱͯ͠ਤ র)ɻࢀ5

(a)

(b)

N N-2N-1 2

D5'

NS5

1

N N-1 2 1N-2 …

NS5 NS5 NS5 NS5

N

N-1

2

1

N-2

…

D5'

D5'

D5'

D5'

N

2

N-2

N-1

1

ਤ 5 4 ݩ࣍ N = 4 ௒ରশήʔδཧ࿦ͷ half-BPS ք৚݅ͱڥ 3 ݩ࣍ N = 4 ௒ରশήʔδཧ࿦ͷ૒ର

ੑͷྫɻ(a) Neumann ք৚݅Λຬͨ͢ڥ 4 ݩ࣍ N = 4 ௒ରশ U(N) ήʔδཧ࿦ͱ couple ͢Δ 3 ݩ࣍

N = 4 ௒ରশ quiver ήʔδཧ࿦ͱ Dirichlet ք৚݅Λຬͨ͢ڥ 4 ݩ࣍ N = 4 ௒ରশ U(N) ήʔδཧ࿦

ͷ૒ରੑɻ(b) ରԠ͢Δ IIBܕ௒ݭཧ࿦ͷ S૒ରͳϒϨʔϯ഑Ґɻ

ͦͷ݁Ռͱͯ͠૒ରͳ૊ʹର͢Δ௒ରশࢦ਺͸ࣄݟʹҰக͢Δ͜ͱ͕෼͔ͬͨɻຊڀݚ͸࿦จ [12]ʹ·ͱ

ΊΒΕ͍ͯΔɻ
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4 Nݩ3࣍ = 4௒ରশήʔδཧ࿦ͷN = (0, 4) half-BPSڥք৚݅ͷ૒

ରੑ

ຊڀݚͰ͸ IIBܕ௒ݭཧ࿦͔Βߏ੒Մೳͳ ݩ3࣍ N = 4௒ରশήʔδཧ࿦ͷ N = (0, 4) half-BPSڥք৚

݅Λௐ΂ͯ [6]ͱ [12]Ͱ͞ڀݚΕ͍ͯΔ ݩ4࣍ N = 4௒ରশήʔδཧ࿦ͱ ݩ3࣍ N − 4௒ରশήʔδཧ࿦ͱ

Nݩ2࣍ = (0, 4)௒ରশήʔδཧ࿦ͷ૒ରੑωοτϫʔΫΛ֦ுͨ͠ɻ2࣍ݩ௒ରশήʔδཧ࿦ͷ௒ରশࢦ਺

͸ۃ༩͢Δدʹ Jeffrey-Kirwanཹ਺ॲํैͬͯಛఆͷήʔδՙిΛ࣋ͭ Ϙιϯ৔ʹରԠ͢Δ΋ͷͱͳݩ2࣍

Δ͜ͱ͕஌ΒΕ͍ͯΔɻैͬͯ [6]ͱ [12]ͷ৔߹ͱҟͳͬͯ N = (0, 4) half-BPS௒ରশΛ࣋ͭήʔδཧ࿦഑

Ґ͸௒ରশࢦ਺ͷࢉܭʹ͓͍ͯ஫ҙਂ͍ॲํᝦ͕ඞཁͱͳΔɻಛʹ Ϙιϯ৔͕ݩ2࣍ couple͢Δʮenriched

Neumannڥք৚݅ʯͰ͸ ΒΕΔͨ͑ߟΔͱ͢ࡏքϞϊϙʔϧ͕ଘڥք্ͷϘιϯ৔ͷ഑ҐʹΑͬͯڥݩ2࣍

Ίɺhalfࢦ਺͸Ϟϊϙʔϧՙిʹؔ͢Δద੾ͳ࿨ΛؚΉඞཁ͕͋Δɻ

ͦ͜Ͱ·ͣ 2 Ϙιϯ৔Λݩ࣍ 3 ήʔδཧ࿦ͷݩ࣍ Dirichlet ք৚݅ͷڥ half ޙ਺ʹՃ͑ɺͦͷࢦ Jeffrey-

Kirwanཹ਺ॲํʹैͬͯ ݩ2࣍ globalରশੑΛήʔδԽ͢Δ͜ͱʹΑͬͯʮenriched Neumannڥք৚݅ʯ

ͷ halfࢦ਺ͷద੾ͳॲํᝦΛߟҊͨ͠ɻ࣮ࡍʹ͜ͷॲํᝦ͸ Neumannڥք৚݅Λຬͨ͢ ݩ3࣍ N = 4௒ର

শྔڥֶ͕ྗ࣓ిࢠք্Ͱ ͷݸ1 ݩ2࣍ N = (0, 4) twistedϋΠύʔଟॏ߲ͱ ͷՙిϑΣϧϛଟॏ߲ͱݸ3

ͷதੑϑΣϧϛଟॏ߲ͱݸ1 couple͢Δঢ়گͰϒϨʔϯߏ੒͔Β༧૝͞ΕΔ૒ରͳήʔδཧ࿦഑Ґͷ௒ରশ

Ұக͢Δ͜ͱ͕͔֬ΊΒΕͨʹࣄݟ਺ͱࢦ (ਤ 6)ɻ

1 1
D5'

NS5'

NS5NS5 D5

1

1

D5'

D5'

NS5D5

NS5'

1 1 1

1

ਤ 6 ݩ2࣍ N = (0, 4) twistedϋΠύʔଟॏ߲ͱՙిϑΣϧϛଟॏ߲ͱதੑϑΣϧϛଟॏ߲ΛؚΉ 3࣍

ݩ N = 4௒ରশྔֶྗ࣓ిࢠͷʮenriched Neumannڥք৚݅ʯͷϒϨʔϯߏ੒ (ਤࠨ) ͱͦͷ૒ରͳϒ

Ϩʔϯ഑Ґ (ӈਤ)ɻ૒ରͳ഑Ґ͸ 3 ݩ࣍ N = 4 twisted ϋΠύʔଟॏ߲ʹର͢Δ Neumann ք৚݅ͱڥ

ͷϑΣϧϛଟॏ߲ͱͳΔɻݸ3

·ͨ [4]ͷ D3ϒϨʔϯϘοΫε഑Ґ͔Β༧૝͞ΕΔ ݩ2࣍ N = (0, 4)௒ରশ U(1)ήʔδཧ࿦ͱϑΣϧϛ

ଟॏ߲ͷؒͷ؆୯ͳϛϥʔରশੑΛପԁछ਺ͷࢉܭʹΑͬͯ͢ূݕΔ͜ͱʹ੒ޭͨ͠ɻՃ͑ͯ ݩ4࣍ N = 4

௒ରশήʔδཧ࿦ͷίʔφʔ഑ҐΛ͞Βʹ couple ͤͯ͞༧૝͞ΕΔ֦ு͞Εͨ૒ରੑͷূݕʹ΋੒ޭͨ͠ɻ

ຊڀݚ͸࿦จ [13]ʹ·ͱΊΒΕ͍ͯΔɻ
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5 ໘্ͷٿݩ3࣍ Nݩ3࣍ = 4௒ରশήʔδཧ࿦ͷ෼഑ؔ਺ͱ૬ؔؔ਺

ݩ3࣍ N = 4௒ରশήʔδཧ࿦ʹର͢Δ ໘ٿݩ3࣍ S3 ্ͷ෼഑ؔ਺͸༷ʑͳ௒ରশԋࢠࢉΛؚ·ͤΔ͜

ͱʹΑͬͯΑΓ๛෋ͳߏ଄Λ࣋ͪಘΔɻಛʹۙ࠷ͷ௒ରশہॴԽͷڀݚ [14, 15, 16]Ͱ Higgsہࢬॴԋࢠࢉͱ

Coulombہࢬॴԋࢠࢉͱݺ͹ΕΔ 2छྨͷہॴԋࢠࢉͷ͍ͣΕ͔ͷू·ΓΛ ໘಺ͷԁٿݩ3࣍ S1 ʹԊͬͨ

೚ҙͷ఺ʹؚΊΔ͜ͱ͕Ͱ͖Δ͜ͱ͕໌Β͔ʹ͞Εͨ (ਤ 7)ɻ

S1

!" !# !$

ਤ 7 ໘ٿݩ3࣍ S3 ಺ͷԁ S1 ্ʹԊͬͨ Higgsہࢬॴԋ͋ࢠࢉΔ͍͸ Coulombہࢬॴԋࢠࢉͷू·Γ {Oi}ɻ

ݩ3࣍ N = 4௒ରশήʔδཧ࿦͸ Higgsࢬͱ CoulombࢬʹରԠ͢Δ 2ͭͷΧΠϥϧϦϯάΛ࣋ͭɻHiggs

ΧΠϥࢬΧΠϥϧϦϯά͸ϋΠύʔଟॏ߲εΧϥʔ৔ͷήʔδෆมͳଟ߲ࣜʹΑͬͯੜ੒͞ΕɺCoulombࢬ

ϧϦϯά͸ dressedϞϊϙʔϧԋࢠࢉʹΑͬͯੜ੒͞ΕΔɻ3࣍ݩ N = 4௒ରশήʔδཧ࿦Λ Ωม͞ܗΕͨ

ฏ໘ݩ2࣍ R2
ϵ ͱ࣌ؒ Rt ͔Βߏ੒͞ΕΔ Խ͞ΕͯࢠΧΠϥϧϦϯά͸ྔ׵ஔ͘ͱɺ͜ΕΒͷՄʹۭ࣌ݩ3࣍

ඇՄ׵ͳྔࢠ Higgsࢬ୅਺ͱྔࢠ Coulombࢬ୅਺͕ಘΒΕΔɻྔࢠ Higgsࢬ୅਺ͱྔࢠ Coulombࢬ୅਺͸

ཧ࿦ͷ FIύϥϝʔλͱ massύϥϝʔλʹͦΕͧΕґଘ͢Δɻࢲ͸ Davide Gaiottoࢯͱͱ΋ʹ ໘ٿݩ3࣍

S3 ্ͷ෼഑ؔ਺ٴͼ S1 ্ʹஔ͔Εͨ Higgsہࢬॴԋ͋ࢠࢉΔ͍͸ Coulombࢬԋࢠࢉͷ૬ؔؔ਺͕Ұൠʹྔ

ࢠ Higgsࢬ୅਺ͱྔࢠ Coulombࢬ୅਺Ͱఆٛ͞ΕΔ VermaՃ܈ͷ twistedࢦඪ (twistedτϨʔε)Λ༻͍

ͯ୅਺తʹߏ੒Ͱ͖Δ͜ͱΛݟग़ͨ͠ɻྔࢠ Higgs ࢠ୅਺ͱྔࢬ Coulomb ୅਺ͷࢬ Verma Ճ܈ͷ twisted

τϨʔε͸ massύϥϝʔλͱ FIύϥϝʔλʹͦΕͧΕґଘ͠ɺS3 ্ͷ෼഑ؔ਺ٴͼ Higgs/Coulombہࢬ

ॴԋࢠࢉͷ૬ؔؔ਺͸͜ΕΒ 2ͭͷ twistedτϨʔεͷੵͷ (τϙϩδΧϧʹࣗ໌ͳ)ཧ࿦ͷ massiveਅۭʹ

ؔ͢Δ࿨ͱͯ͠ද͞Εɺmassύϥϝʔλͱ FIύϥϝʔλ྆ํʹґଘ͢Δɻ

ಛʹฏୱۭ࣌಺ͷ N ຕͷ M2 ϒϨʔϯΛهड़͢Δ ADHM ήʔδཧ࿦ (1 ͷϋΠύʔଟॏ߲ݱͷਵ൐දݸ

ͱجຊදݱͷϋΠύʔଟॏ߲Λ࣋ͭ U(N) ήʔδཧ࿦) ʹ͓͚Δ massive ਅۭ͸ Young ਤʹΑͬͯϥϕϧ

෇͚͞Εɺ෼഑ؔ਺͸ Young ਤʹؔ͢Δ࿨ͱͯ͠ද͞ݱΕΔɻADHM ήʔδཧ࿦ͷྔࢠ Higgs ୅਺ͱࢬ

Coulombࢬ୅਺͸༗ཧ Cherednik୅਺ͷ spherical෦෼Ͱ͋Γ [17]ɺզʑ͸ VermaՃ܈ͷ twistedࢦඪ͕ٯ

ฏ໘෼ׂ (ਤ (রࢀ8 ͷ਺্͑͛ͷ฼ؔ਺ͱؔ࿈ͮ͘͜ͱΛݟग़ͨ͠ɻຊڀݚ͸࿦จ [18]ʹ·ͱΊΒΕ͍ͯΔɻ
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