海外特別研究員最終報告書

独立行政法人 日本学術振興会 理事長 殿
採用年度：H29年度
受付番号：0146

海外特別研究員としての派遣期間を終了しましたので、下記のとおり報告いたします。
なお、下記及び別紙記載の内容については相違ありません。

記
1. 用務地（派遣先国名）用務地：オックスフォード（国名：英国）
2. 研究課題名（和文）※研究課題名は申請時のもとで変わらないように記載すること。
複雑流路内の粒子ダイナミクスの数理：実験データから理論予測まで
3. 派遣期間：平成29年4月11日～平成31年2月13日

4. 受入機関名及び部局名

Mathematical Institute, University of Oxford

5. 所期の目的の遂行状況及び成果…書式任意 書式任意 (A4判相当3ページ以上、英語で記入も可)
（研究・調査実施状況及びその成果の発表・関係学会への参加状況等）
（注）「6.研究発表」以降については様式10－別紙1～4に記入の上、併せて提出すること。

派遣期間中の研究活動状況、及び成果の発表や関連学会等への参加状況を以下、小プロジェクトごとにまとめて記載する。

1）線形粘弾性流中の微小遊泳に関する研究

（オックスフォード大学との共同研究）。ヒト精子の遊泳する生体内的水は、非ニュートン流体に分類されるが、線形のマクスウェルモデルで近似することができることが実験的にも確認されている。線形の粘弾性流体中の微小物体運動の一般論と数値解析手法を定式化した。数値解析例も含めて学術誌に投稿し、出版された[Ishimoto & Gaffney, Boundary element methods for particles and microswimmers in a linear viscoelastic fluid, J. Fluid Mech., 831 (2017) 228-251]

本研究では低レイノルズ数の線形マクスウェル流体中の遊泳物体の運動学がニュートン流体中の運動学と一致することを理論的に明らかにした。それゆえ、微小遊泳体は往復運動（方向転換対称的な形状変形）では運動の1周期で元の位置に戻る、というパーセルの枠立てる定理は、線形の粘弾性流体に対しても拡張できることがわかった。

また、この研究に関してセミナー講演、及び学会講演で発表した。

2）生物遊泳と流体運動の次元性に関する研究

微小生物の遊泳における流体運動の次元と流路内での運動の安定性に関する研究を論文としてまとめ、学術誌に投稿した。次元の運動に関する研究は発表論文[Ishimoto & Crowdy, Dynamics of a tread

2次元の運動の場合、流体相互作用を解析的に解くことにより、生物の運動は3変数の常微分方程式に帰着される。そのうちの2変数に注目すると、その微分方程式がハミルトニアン方程式で記述できることがわかった。見出したハミルトニアンは時間不変性となっており、これを用いることで生物運動が分類できる。非定常な変形に対応する生物の変形を考えた場合には、ハミルトニアンはもはや時間不変性ではなくなり、カオスが生じる。一方、3次元の運動の場合には、数値的にこのようなハミルトニアン構造は見出されず、流れ間面近傍での運動は、安定化が存在する。2次元の運動に、この結果を応用し、流れ間面の静電的な性質を操作することにより、ハミルトニアン構造を潰し、カオス的な運動を安定化できることを数値的に示した。

また、これらの研究内容は、セミナー講演、及び学会講演で発表した。特に、2017年9月にケンブリッジで開催された国際会議Complex Motion in Fluids 2017で発表を行った。

3) ヒト精子鞭毛の解析に関する研究


特に、液の粘度が水程度の低い場合と、生体液程度の高粘度の場合での精子鞭毛の流形の違い、周りの流れパターンの違い、遊泳効率の違いなどを解析したものである。高粘度波体は15メリセルロース液を使用しており、実験的には線形のマックスウェルモデルでよく記述できる。それゆえ、高粘度波体中の精子周りの流れは上記1) Ishimoto & Gaffney (2017)で提案した線形粘弹性流中の自己推進波体に拡張した境界要素法を用いた。


4) ヒト精子の集団運動に関する研究


上記の3)のプロジェクトの結果であるIshimoto et al. (2017), Ishimoto et al. (2018)では精子周りの流

この結果は、生物種は異なるもののウシ精子の集団精子ダイナミクス[Tung et al., Sci. Rep. (2017)]を定性的に再現している。さらに、異なる液中での鞭毛波形の詳細な違いを考慮に入れる事で初めてこのクラスター現象の差異が理論的に表現できる。それ故、本結果の内容は、マルチスケールの運動を記述する実験データに基づいた理論的アプローチのひとつの成功例と言える。

また、本研究内容については、セミナー講演及び学会講演で発表した。特に2018年7月にリスボンで開催された11th European Conference on Mathematical and Theoretical Biology、及び同年11月のアトランタで開催された71st Annual Meeting of American Physical Society, Division of Fluid Dynamicsで発表を行った。

5）内部駆動される弾性フィラメントの流体中の挙動に関する研究


6）気液境界近傍の微小遊泳体の研究

オックスフォード大学でオフィスをシェアしていた研究者との共同研究プロジェクトを立ち上げた。境界付近の微小遊泳物体の流体相互作用に関する理論解析であり、3つ玉モデルとして知られる数理モデルの解析である。以前から開発してきた境界要素法の数値計算が適用でき、理論計算と相補的な結果を与えることができた。結果は論文としてまとめ、投稿準備中である（オックスフォード大学、チェコ工科大学との共同研究）。

7）原生生物リーシュマニアの遊泳に関する研究

リーシュマニア症を引き起こす原生生物リーシュマニアの境界および背景流れ中での遊泳・輸送の問題も、精子の遊泳ダイナミクスと同様の理論解析・数値解析の手法が適用できる。実験研究者からのハイスピードカメラ画像データの提供を受け、これを解析し、数値計算にフィードバックした。

8） 微小遊泳体の制御理論に関する研究

2017年10月の国際会議（第27回日本数理生物学会）での議論をきっかけに、精子やバクテリア等の微小遊泳体の制御理論に関して滞在型の共同研究を行った（フランス国立情報学自動制御研究所との共同研究）。簡単なモデルによる理論解析により、いくつか非自明な結果が得られている。来年夏の国際会議での発表を目指し研究を進めている。

9） バクテリア遊泳の数理理論の研究


10） 一般の複雑形状流路における遊泳体の高速数値解法に関する研究

一般の複雑形状流路内の運動の解析は数値計算的に計算コストが多く、なかなか解析が進んでいなかったが、2018年に発表されたnearest-neighbor regularized Stokeslet methodと呼ばれる境界要素法の一種は数値計算コストを大幅に削減できる見込みがあることがわかり、この手法を用いて解析を試み始めた（オックスフォード大学、パーキンガム大学との共同研究）。低レイノルズ数流れの解析で非常に強力な手法である境界要素法でも流路の境界を要素に離散化することで計算量が莫大になってしまう。本手法を用いて、無限境界付近の微小遊泳ダイナミクスを解析し、境界要素法の数値コードとの比較をした。精度を落すことなく、高速で計算できることを確認した。その後、境界が湾曲している場合などに拡張し解析を行い、得られた結果は論文としてまとめ、現在、投稿準備中である。

11） その他