線維芽細胞の多彩な機能と 臓器修復に果たす役割の解析

京都大学 大学院医学研究科 腎臓内科学 教授

柳田

(お問い合わせ先) TEL: 075-751-3860 E-MAIL: kidney2011@kuhp.kyoto-u.ac.jp

研究の背景

線維化は進行した腎臓病に共通する所見ですが、そのメ カニズムには謎が多く残されています。線維化を担う myofibroblastの由来についても諸説がありましたが、私 たちは、腎臓の線維芽細胞がmyofibroblastへと形質転換 することで線維化を引き起こすことを見出しました(図1の 枠内)。腎臓の線維芽細胞は赤血球産生に必須のホルモン、 エリスロポエチンを産生する内分泌細胞でもありますが、 形質転換の際にその機能が失われ、腎性貧血を引き起こす ことも見出しました (J. Clin Invest 2011)。

この結果により、腎線維芽細胞は多彩な機能をもち、 可塑性に富むと想定されましたが、その制御機構や臓器 修復における役割は明らかではありませんでした。

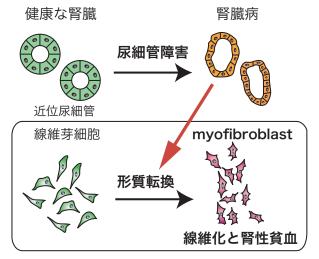
研究の成果

私たちは、独自の遺伝子改変動物を作成し、腎臓の機 能単位であるネフロンの一部である近位尿細管細胞の障 害が、周囲の線維芽細胞の形質転換を起こし、それに伴っ て腎性貧血や線維化を引き起こすことを証明しました (図1、J. Am Soc Nephrol 2016)。

-方で、高齢者では腎臓病が治りにくいことが知られ ていますが、その原因は未解明でした。私たちは、高齢 マウスの腎臓を障害すると、腎臓内にリンパ節のような 「三次リンパ組織」が形成し、炎症が遷延することで修 復が遅くなることを見出しました。さらに、腎臓の三次

リンパ組織では、多彩な形質を獲得した線維芽細胞がケ モカインを産生し、リンパ球を呼び寄せるなど、重要な 働きを担っていました (図2、JCI Insight 2016)。加 齢に伴う三次リンパ組織形成はヒトの高齢腎でも観察さ れ、種を越えて共通した現象であると考えられました。

今後の展望


この結果により、線維芽細胞の形質転換のきっかけが、 尿細管細胞とのクロストークであることが明らかになり ました。このクロストークを担う分子を同定することで、 線維化に対する理解が深まり、創薬へとつながることが 期待できます。

三次リンパ組織の発見および解析によって、線維芽細 胞のさらなる多彩な機能が明らかになりました。今後は、 線維芽細胞が加齢に伴ってこのような機能を獲得し、三 次リンパ組織を形成する分子基盤を解明したいと考えて います。加齢に伴う三次リンパ組織の形成は、高齢者の 腎臓病の回復を促進する創薬標的として有望です。

線維芽細胞の多彩な機能とその制御機構を解明するこ とができれば、この細胞がつくり出す微小環境が臓器修 復・維持に果たす役割の一端が明らかになるのではない かと期待しています。

関連する科研費

2014-2016年度 基盤研究 (B) 「腎臓の線維化 とネフロン修復の分子基盤の包括的解明」

線維化と腎性貧血を引き起こす線維芽細胞の形質転換は、近位尿 細管障害によって誘導される

線維芽細胞がmyofibroblastへと形質転換することが線維化と腎性貧血 (枠内)、この形質転換は近位尿細管障害によって誘導 されることを見出しました (赤矢印)。

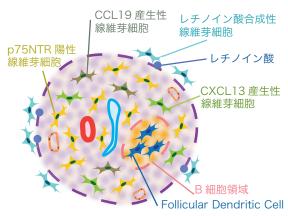


図2 加齢に伴う三次リンパ組織と多彩な線維芽細胞群

加齢に伴う腎臓内の三次リンパ組織形成には、レチノイン酸合成能や ケモカイン産生能など、多彩な形質を獲得した線維芽細胞が必須です 発達した三次リンパ組織ではB細胞領域も形成されますが、その維持に も線維芽細胞が重要な役割を果たしています。