Principal Researcher		Satoru	Komori					er ofRes		5
							earc	hers	1	
Research Insti	itution	Professor,	Mechanic	al Engir	neerin	g, Kyoto	Loca	tion of In	s []	Kyoto
· Department · Title		university					titu	tion	\perp	
Title ofPr	ScalarTransferMechanisms at theSheared Air-WaterInterface:									
oject	Estimation of ScalarTransferRate									
Abstract of	It is of great importance to investigate the heat and mass (scalar)									
ResearchPro	transfer mechanism across the air-sea interface in order to improve the									
ject	reliability of predictions for global warming. However, previous									
	sub-models used in a general circulation model for predicting heat and									
	mass transfer velocities across the air-sea interface have been based on									
	the simple assumption that the transfer velocities are proportional to wind									
	velocity over the ocean surface. This rough assumption reduces the									
	reliability of the sub-models. The aim of this study is, therefore, to									
	clarify the heat and mass transfer mechanism across the sheared wavy									
	air-water interface from the fluid-mechanical point of view and to develop									
	reliable models for the heat and mass transfer velocities that truly reflect									
	the physical processes involved. Laboratory experiments in a wind-wave									
	tank will enable the investigation of the effects of ocean surface physical									
	processes on the heat and mass transfer between the atmosphere and the									
	ocean, including phenomena such as wave breaking, swells, density									
	stratifications, surface contamination and rain. The resulting improved									
	models for the scalar exchange rate between the atmosphere and the ocean									
	will lead to improved performance by the general circulation model.									
References	1. S. Komori and R. Misumi, The effects of bubbles on mass transfer across breaking air-water									
	interface, Gas Transfer at WaterSurface, AGU monograph127,pp.285-290 (2001).									
	2. S. Komori, T. Shimada and R. Misumi, Turbulence structure and mass transfer at a									
	wind-driven air-water interface, Wind-over-Wave Couplings: Perspectives and Prospects, Oxford									
	Univ. Press, pp.273-285 (1999).									
Term of Project	Fiscal y	ars)	urs)							
Budget Alloc	FY20	02 I	FY2003	FY200)4	FY200:	5	FY2006		TOTAL
ation										
(inthousandofyen)	16	,300	18,600	23	600	10,0	000	9,40	0	77,900
Homepage Address http://mech-server.mech.kyoto-u.ac.jp/lab/komori/										