World Premier International Research Center Initiative (WPI) FY 2017 WPI Project Progress Report

Host Institution	Kyushu Univer	rsity				Host Institution Head	Chiharu Kubo
Posearch Conter	International	Institute	for	Carbon	Neutral	Center Director	Petros Sofronis
	Energy Resear	rch				Center Director	Petros Solionis

Common instructions:

* Unless otherwise specified, prepare this report from the timeline of 31 March 2018.

* So as to base this fiscal year's follow-up review on the "last" center project, please prepare this report from the perspective of the latest project plan.

* Use yen (¥) when writing monetary amounts in the report. If an exchange rate is used to calculate the yen amount, give the rate.

* Please prepare this report within 10-20 pages (excluding the appendices, and including Summary of State of WPI Center Project Progress (within 2 pages)).

Summary of State of WPI Center Project Progress (write within 2 pages)

I²CNER's grand challenge is to develop the foundations for the engineering of energy systems that will address Japan's future energy needs and contribute to the reduction of the nation's CO₂ emissions by 70% from the 1990 levels by 2050. To carry out its mission, I²CNER's research is driven by well-defined milestones and targets that are identified in roadmaps of the underlying technologies. Our roadmaps are developed through a close collaboration between the technical divisions and the Energy Analysis Division (EAD). The impact of I²CNER's research on CO₂ emission reductions is summarized in an I²CNER CO₂ Report, entitled "Toward 2050: Contributing to a Low Carbon Energy Society," which outlines both the direct CO₂ reductions enabled by I²CNER research thrusts and the industry contributions which are underpinned by these innovations. This Report specifically estimates our ongoing efforts in comparison to competing (or complementary) industries, and also factors in the technological areas in which we do not compete (nuclear energy, for example). Thus, as a result of our current accomplishments, approximately 0.42% of the total required CO₂ reductions, and as a result of our projected future achievements, approximately 5.38% of the total required reductions can be realized by I²CNER technologies and innovations if they are applied to appropriate energy systems. Significantly, in addition to I²CNER's direct contributions, development and implementation of I²CNER's relevant technology efforts will account for a further 35.3% of the 2050 target, which demonstrates that I²CNER's research efforts underpin impactful energy technologies. Lastly, the positive impact of I²CNER's accomplishments, not only on science, engineering, and offsetting CO₂, but also on employment, the active transfer of technology to industry, influence on social and academic impacts including education and cultural exchange, and international partnerships, is described in detail by a living document entitled "Powering the Future: Economic, Environmental, and Social Impacts of I²CNER," which was compiled by I²CNER last March.

Conducting research of the highest world level: The relevance of the I²CNER research efforts and objectives to enabling the green innovation initiative of the government of Japan is demonstrated by the 24 new collaborative industrial projects in FY2017 (104 in total since inception) in which its researchers are involved with industry. A total of 14 (48 in total since inception) projects resulted in technology transfer events. In FY2017, I²CNER filed for 28 (219 in total since inception) patents and was granted 13 (59 in total since inception) patents (some of which were applied for in or before FY2016). In addition, in FY2017, I²CNER researchers received 24 (252 in total since inception) national and international awards (including best oral, poster, and encouragement presentation awards for young researchers) from various societies and institutions around the world. As an Institute, in FY2017, we realized 5 (19 in total since inception) and made significant progress toward 2 short-term milestones and 2 targets in other projects; 4 mid-term milestones have also been realized since inception. A selection of the Institute's breakthrough results in FY2017 is as follows: a coordinated experimental and theoretical program in PI Ishihara's division which explores advanced hybrid perovskite photovoltaic device technology for hydrogen production based on novel material processing methods and supported by a multi-scale modeling technique that is being used to drive process optimization. Excellent progress has been made in PI Ogo's division on bio-mimetic catalysis of the oxidation of both H_2 and CO in one pot, which is highly relevant to our future hydrogen economy since CO is a persistent contaminant of H₂ supplies. The newly reported catalyst is based on a NiIr core, comparable in design to the active site of the iconic [NiFe]-hydrogenases and the CO-dehydrogenases (CODH), two of the most important enzymes in this area. PI Takata's division advanced fundamental understanding of wettability and adsorption during liquid-vapor phase change by showing ultrathin water film inside open carbon nanotubes (CNTs) at high vacuum $(\sim 10^{-5} \text{ Pa})$ to be stable for the first time, and elucidated fundamental aspects governing the behavior of both short- and long-term heterogeneous nucleation on surfaces. PI Matsumoto's division reports a new electrolyte which enables high electrolyzer currents with high stability at lower temperatures, a new catalyst preparation process which yields high currents for oxygen evolution, and new detailed insights into the nature of active sites in non-precious metal oxygen reduction catalysts and the role of metal contacts for fuel cells.* PI Fujikawa's division developed membrane materials for CO₂/H₂ and CO_2/N_2 separation that set the worldwide benchmark for the highest permeance. PI Tsuji's division reported a novel continuous monitoring method to estimate spatio-temporal variation of injected CO_2 at high temporal resolution and much lower cost than existing/conventional methods. Also, the division demonstrated that the traditional view that two-phase flow in CO₂ sequestration is governed only by the capillary and viscosity ratio numbers is incomplete, and that the Reynolds number must also be considered. By employing controlled-environment experiments, PI Somerday's division demonstrated that part-per-million levels of trace gases can have profound effects on material behavior, such as friction and fracture, offering new possibilities for modifying performance of components. (* revised in the final version)

Advancing fusion of various research fields: Strengthening the collaborations with other Kyushu University (KU) units, and in particular, with the Institute of Mathematics for Industry (IMI), I²CNER made significant inroads in the Applied Mathematics for Energy Initiative in FY2017. The group of PI Tsuji and Prof. Shirai (IMI) used the techniques of applied algebraic topology (known as persistence homology, a 21st century development in the field of mathematics) to quantify properties of porous materials for CO₂ sequestration. Using non-convex optimization, the group of Prof. Bose (Illinois) and Prof. Hoa (I²CNER) addressed optimal production and distribution plans in uncertain situations characterized by the presence of renewable energy sources and microgeneration. The group of Profs. Murata (KU) and Hirose (IMI) deal with the patterns of energy consumption in smart grid. Prof. Murata modeled (potentially irrational) customer behavior using ideas from reinforced learning theory, and developed reverse optimization tools aimed at creating a system of incentives to shape the demand in a prescribed way. Prof. Hirose looked at statistical models to analyze the data of power consumption in order to create predictive models by clustering the energy consumers based on the patterns (time series) of their usage. Using bioinspiration, the group of Prof. Miljkovic (Illinois) is exploring the boundaries of wetting through the fusion of mechanical engineering, material science, entomology, chemistry, and biotechnology. His team was the first to show that wettability in nature is correlated with taxonomy, life cycle, and reproductive strategies, rather than habitat. In the Ogo group's Science publication, which fuses biochemistry with chemistry and structural biology, the crystal structure of a new form of a [NiFe]-hydrogenase enzyme in both the oxidized and reduced states was determined. The group proposed that the enzyme is able to switch geometries to either effect catalysis or to protect itself from aerobic degradation. This knowledge will be integrated into the designs of new bio-inspired catalysts.

Establishing international research environment: The international relationship between Kyushu University and Illinois continues to be strengthened. Examples include the Partnership for International Research and Education (PIRE) exchange program, which sends undergraduate students from the U.S. to Japan to conduct research at I²CNER; a visit from the Dean of the KU School of Engineering, Prof. Takamatsu, to Illinois; the exchange visit of 6 KU undergraduates to Illinois for approximately 1 month; and the visits of 2 KU faculty to Illinois under the I²CNER Collaborative Foreign Exchange Program, one of which was a sabbatical. Ripple effects of this productive relationship are being seen as there is now an initiative for a collaboration between the new Carle Illinois College of Medicine (CICOM) and KU's School of Medicine. In fact, this collaboration was implemented through 2 visits by KU's EVP Wakayama to Illinois, as well as a visit by the Dean of the Carle Illinois College of Medicine, Prof. King Li, to KU. Specific highlights of I²CNER's globalization efforts in FY2017 include a new partnership with the University of Göttingen, led by Prof. Reiner Kirchheim and I²CNER's Director, to establish an International Research Training Group that will be co-funded by the German Research Foundation (DFG) and JSPS, as well as the JSPS Core-to-Core program which provided funding for joint research carried out between I²CNER, Imperial College, London, Paul Scherrer Institut, and the Massachusetts Institute of Technology. The international image of KU is also being advanced through events such as the I²CNER Annual Symposium and the 12th Japan-France Workshop on Nanomaterials, which attracted 166 and 79 participants, of which 86 and 40 were from overseas, respectively. As of March 31, 2017, I²CNER has a total of 24 partner institutions in the US, Europe, and Asia. I²CNER researchers hosted a grand total of 95 distinguished visitors to Kyushu University from all over the world. The Institute's researchers were responsible for organizing, co-organizing, or serving on the scientific committee for 17 international conferences, 21 international conference sessions/symposia or workshops, and 10 I²CNER international workshops. In addition, in FY2017 I²CNER's researchers had joint publications with researchers from 141* institutions around the world. In FY2017, I²CNER placed 11 (37 in total since inception) of our researchers at various Japanese (excluding KU) and international institutions. Lastly, there were a total of 14 faculty and 3 postdoc visits from Illinois to KU in FY2017. (* revised in the final version)

Reforming the research organization: I²CNER's presence at KU has precipitated the formation of the Kyushu University Platform of Inter/Transdisciplinary Energy Research (Q-PIT), which cross-pollinates a wide range of collaborations on energy research between diverse disciplines including social sciences, economics, law, and political sciences. I²CNER continues to be at the center of Kyushu University's Energy Week, which is a week-long sequence of international workshops and symposia hosted by various energy research centers. I²CNER has spearheaded efforts to hire female faculty and in FY2017, the following female researchers were hired: 1 Associate Professor, 1 Assistant Professor, and 3 postdocs. This brought the total number of I²CNER's female researchers up to 14, which makes the percentage larger than corresponding percentages from the other sciences, math, and engineering units of KU. Among the 19 newly hired faculty and postdocs in FY2017, five were women. A huge step in reformation has been KU converting to the Academic Quarter (4-term) System in order to facilitate visiting faculty and student exchange programs from universities in the U.S., such as Illinois. Additionally, the I²CNER Undergraduate Exchange Program has become such a success that a similar program is being explored for engineering graduate students between KU and Illinois.

Efforts to secure the center's future development over the mid- to long-term: On April 1, 2017, I²CNER established the "Industrial Advisory Board (IAB)," whose members are prominent executives from industry, government agencies, and national laboratories who advise I²CNER on opportunities for interactions with industry and technology transfer. In addition, I²CNER's researchers have made every effort to secure the sustainability of the Institute beyond the WPI period by submitting proposals for external research funding. Such efforts have led to prestigious grants, such as the JSPS Core-to-Core program, as well as the creation of the Research Center for Next Generation Refrigerant Properties (NEXT-RP). These initiatives, as well as the commitment from KU on tenured faculty positions, demonstrate the permanence of I²CNER and the path forward to sustainability of the Institute. As of April 1, 2018, I²CNER has filled a total of 4 Associate Professor and 4 Professor Positions, with 2.75 points (approximately 3 positions) left to fill in FY2018. In addition, two tenure-track Assistant Professors were hired in the area of applied math for energy, bringing the total of tenured faculty to 10, with up to 3 more positions to be filled. To address the loss of senior PIs due to retirements, two tenured young faculty have been elevated to the PI level as of April 1, 2018.

- * Please describe clearly and concisely the progress being made by the WPI center project from the viewpoints below. - In addressing the below-listed 1-6 criteria, please place emphasis on the following:
 - (1) Whether research is being carried out at a top world-level (including whether research advances are being made by fusing fields).
 - (2) Whether a proactive effort continues to be made to establish itself as a "truly" world premier international research center.
 (3) Whether a steadfast effort is being made to secure the center's future development over the mid- to long-term.

1. Conducting research of the highest world level

* Regarding the criteria used when evaluating the world level of center, please note any updated results using your previous evaluation criteria and methods or any improvements you have made to those criteria and methods.

Evidence of I²CNER's international stature and relevance can be seen in its 316 journal publications in FY2017, of which, 22 were published in journals with an impact factor greater than 10. In fact, the Institute's rate of productivity continues to remain high (53, 150, 263, 318, 308, 316 and 316 publications in FY2011, 12, 13, 14, 15, 16, and 17, respectively). Since its inception, 296 of the Institute's publications have been cited between 10 and 19 times, 125 have been cited 20-29 times, 48 have been cited 30-39 times, 33 have been cited 40-49 times, and 64 have been cited 50 or more times.

 $\rm I^2 CNER's$ research activities are carried out within its technical divisions in collaboration/interaction with the EAD to continuously assess techno-economic relevance and feasibility. Within the divisions,

research is organized in projects, with each project having well defined milestones on a roadmap toward a final target. According to I²CNER's scenarios, the I²CNER mission will be realized when all project targets across all divisions are achieved. Toward this goal, within each project, research efforts by individual researchers are targeting the corresponding milestones. In the following some of our best accomplishments in FY2017 are presented in relation to the advancement of the institute toward its roadmap milestones and targets.

Energy Analysis (Acting Division Leader: Prof. Itaoka)

Impact of I²CNER's Research on CO₂ Reduction

Based on our analysis of current and future achievements, approximately 0.42% of the total required CO_2 reductions via current achievements and approximately 5.38% of the total required reductions through our future achievements can be realized by I²CNER technologies and innovations if they are applied to appropriate energy systems (limiting the contribution of any one technology to 50% of the resultant market). In addition to I²CNER's direct contributions, all I²CNER activities also contribute to the overall relevant industry efforts (a further 35.3% of the 2050 target, shown in dark grey in Fig. 1b) through the provision of underpinning technologies and analyses.

Figure 1. I²CNER's Current and Future Contributions to CO₂ Reduction in Japan.

As shown in Fig.1b, the leading contributors to $I^2CNER's 2050 CO_2$ reduction efforts include energy storage and carriers, encompassing electrolysis and the reversible fuel cell; CO_2 capture and storage, through novel CO_2 separation membranes and monitoring technologies; and energy efficiency, utilizing energy saving heat loop-tube technologies and friction reducing coatings. EAD continues to analyze each technology thrust within I^2CNER in line with our energy system scenarios to ensure that our contribution toward CO_2 reduction and to underpinning industry efforts is maximized.

Energy Transitions in Japan

In collaboration with our University of Illinois satellite members and annual workshop participants, FY2017 has seen the significant progression of the EAD's energy transitions research. Our initial research in this area focused on an investigation of the current Japanese energy transition climate from the perspective of socio-technical regimes. This investigative and comparative work resulted in the publication of an academic paper contrasting Japan's energy transition progress and prospects with international transition leaders (Chapman and Itaoka, *Renew. Sustain. Energy Rev.* 81(2), 2019-2027, 2018). Building on these findings, a subsequent achievement within this research theme was achieved, specifically identifying householder's preferences in terms of energy choice, use and participation in the future energy market.

Utilizing the outcomes of our national survey of in excess of 4000 households across Japan, we were able to identify the impacts of energy system liberalization in terms of choice of energy retailer and reasoning (Chapman and Itaoka, *Energy Res. Soc. Sci.*, 37, 102-110, 2018). In addition, we could test several participatory scenarios incorporating demand response, energy self-sufficiency and network storage. EAD's specific knowledge of the Japanese energy market and liberalization legislation allowed for a targeted household survey to be conducted from within I²CNER, reinforced by our stakeholders' participation at the annual I²CNER symposia which inform future energy system modelling, cognizant of transition enablers and barriers, and stakeholder preferences.

Global Societal Penetration of Hydrogen Research

The EAD hosted international researchers from the University of Texas at Austin, Imperial College, London as well as Japanese researchers from the University of Tokyo and Kyushu University to assess the potential for hydrogen in the future energy system, with sponsorship from Toyota. This work is international and interdisciplinary in nature, taking 4 distinct case studies including a global energy model (EAD's contribution), which considers 82 global regions in order to develop a cost-minimized energy system according to fuel source, conversion, CO₂ restrictions, and cognizant of technological developments to 2050 (and beyond). Additionally, this research also considers the social welfare economics of hydrogen deployment, focusing on the social cost of carbon (The Urban Institute, Kyushu University). Further, this research considers two nation specific case studies, firstly in the U.S. utilizing hydrogen as an energy carrier for road vehicles (University of Texas at Austin), and the decarbonization of the gas grid using hydrogen in the UK (Imperial College, London). Collectively, this research identifies potential quanta of future hydrogen penetration into society in terms of feedstocks (methanol synthesis), heating (residential and industrial) and transport (predominantly through the introduction of Fuel Cell vehicles) (Chapman, *et al., Environ. Res. Lett.*, under review).

I²CNER's unique status as an international research institute with knowledge and prowess in terms of hydrogen research allowed for this research to flourish, and, leveraging sponsorship from Toyota was able to host a 3-day joint research seminar with our collaborators to bring together the interdisciplinary aspects of our work. EAD lead in the development of an academic research paper submitted to Environmental Research Letters, to be followed up by an in-depth global hydrogen model assessment from EAD in FY2018.

Molecular Photoconversion Devices (Lead PI: Prof. Ishihara)

Lead-free perovskite solar cells: Seminal advances in solar cells based on the hybrid perovskite materials have been made in FY2017 as reported in four publications, one of which has been cited 19 times. The already team demonstrated devices with 19% conversion efficiency and 10,000 hours half life (Oin et al., Adv. Mater., 28, 466, 2016 and Adv. Mater., 29, 1603808, 2017). The new process controls miscibility of precursors in solution to improve coverage of a surface. Working with Dr. Scajev from Vilnius University, two carrier diffusion behaviors, one based on band-like and one based on delocalized diffusion were demonstrated. (Šcajev et al., J. Phys. Chem. C 121, 21600, 2017). Which of these provides higher diffusivity depends on the carrier modeling density. Collaborative and device characterization with the University of Illinois shows

Figure 2. Experimental and simulation results for the standard and revised two-step synthesis process for hybrid perovskite solar cells showing improvement with the two-step process.

mechanisms limiting the cell performance and how reduced carrier recombination in the bulk of the absorber layer was obtained through novel processing (see also below). Results of the model are shown along with simulations in Fig. 2. Defects mediating recombination were also shown to increase in some perovskites when a phase transformation occurs so materials and synthesis processes were designed to reduce this, which improved stability. The effect of additives on grain boundary properties in hybrid perovskites were also studied in collaboration with Jan Seidel of the University

of New South Wales and using scanning Kelvin probe force microscopy. (Faraji *et al.*, *J. Phys. Chem.* C, 122 (9), 4817, 2018). *This effort addresses the short-term milestone for project 1 of the Molecular Photoconversion Devices Division.*

A novel multiscale model for functionalized semiconductor electrodes: Kyushu and Illinois groups collaborated to develop an integrated multiscale model based on density functional theory (DFT) and a drift-diffusion model of charge transport in devices. The model was used to design functionalized photocathodes for high-efficiency H₂ generation (see also above). Molecular functionalization of silicon (111) photoelectrodes has been modeled to understand enhanced charge separation due to the functional group surface dipole. Our work provides a direct link between the photoelectrode functional group and the resulting device behavior. We used the model to predict which molecule would be the most effective for specific charge transport properties. The model was conceived through collaborations of post-doc (Dr. Kearney) and faculty (Profs. Staykov, Ertekin) with photoelectrode experiments carried out by a number of groups at Kyushu. (Kearney *et al.*, J. *Am. Chem. Soc.* 140, 50-53, 2018 and *J. Phys. Chem.* C 121, 11312-11318, 2018). *This effort targets the short-term milestone for project 1 of the Molecular Photoconversion Devices Division*.

Catalytic Materials Transformations (Lead PI: Prof. Ogo)

One model, two enzymes: activation of hydrogen and carbon monoxide: Projects in this division made excellent progress on biomimetic (or bio-inspired) catalysis. The focus remains on transformations of small molecule substrates including H₂, N₂, CO₂, and H₂O, since these are central to the I²CNER mission of producing clean fuels for carbon neutral power generation cycles. Following the division roadmap, research efforts of the Ogo group have made particular progress on single catalysts for energy-relevant transformations of multiple substrates. The ability to catalyze the oxidation of both H₂ and CO in one pot is highly relevant to our future hydrogen economy since CO is a persistent contaminant of H₂ supplies. The newly reported catalyst is based on a NiIr core, comparable in

Figure 3. Scheme illustrating the activation of both H2 and CO by the new NiIr bifunctional catalyst.

design to the active site of the iconic [NiFe]-hydrogenases and the CO-dehydrogenases (CODH), two of the most important enzymes in this area. The CO and H₂ bind to the Ir center, as verified by X-ray crystallography. An additional advantage of this design is its compatibility with aqueous media, which allows the operator to control product distribution by manipulating pH. The catalyst has been demonstrated in an actual fuel cell using H₂, CO, and H₂/CO as fuels for oxidation at the anode (Ogo *et al., Angew. Chem. Int. Ed.* 56, 9723-9726, 2017). *This effort satisfies the short-term milestone for project 1 of the Catalytic Materials Transformation Division.*

Thermal Science and Engineering (Lead PI: Prof. Takata)

Super-stable ultrathin water films: Suspended ultrathin water film with thickness of 3–20 nm was shown to be stable for the first time inside open carbon nanotubes (CNTs) at high vacuum ($\sim 10^{-5}$ Pa) using transmission microscopy (TEM, Fig. 4). The stability of the confined water film arises due to additional molecular interactions stemming from the extended water meniscus on the hydrophilic surface. This finding enables greater fundamental understanding of wettability and adsorption effects during liquid-vapor phase change which is a *mid-term milestone of the division's projects HMT-1 and HMT-2*.

Volatile organic compound mediated nucleation: The mechanism of heterogeneous nucleation on hydrophobic surfaces remains poorly understood. We observed for the first time the formation of high surface energy nanoscale agglomerates on hydrophobic coatings after condensation/evaporation cycles in ambient conditions (Fig. 5). To investigate the deposition dynamics, we studied the nanoscale agglomerates as a function of condensation/evaporation cycles via optical and field emission scanning electron microscopy (FESEM), microgoniometry, nucleation statistics, and energy dispersive X-ray spectroscopy (EDS). The FESEM and EDS results indicated that the nanoscale agglomerates stem from absorption of sulfuric acid based aerosol particles inside the droplet and adsorption of volatile organic compounds during condensation, which act as preferential sites for heterogeneous nucleation after evaporation. The insights gained from this study elucidate fundamental aspects governing the behavior of both short and long term heterogeneous nucleation on surfaces, enable greater fundamental understanding of wettability and adsorption effects during liquid-vapor phase change which is a midterm milestone of the division's projects HMT-1 and HMT-2.

Spherical activated carbon material: We have developed a world-leading activated carbon material Spherical Activated Carbon (SAC) to enhance the adsorption capacity of heat pumps. By developing a demonstration of the system through a prototype using an SAC adsorption heat exchanger, and testing the performance in collaboration with an automotive heat pump manufacturer, we showed superior performance (Jribi *et al., IJHMT,* 108, 1941-1946, 2017). *This development progresses us toward achieving the short-term and mid-term milestones of the division's project TES-1.*

Electrochemical Energy Conversion (Lead PI: Prof. Matsumoto)

Proton conductor steam electrolysis cell: A steam electrolysis voltage as low as 1.45 V was attained at current densities of 0.2 and 0.5 A cm⁻² at temperatures of 550°C and 600°C, respectively, with efficiency >82% current using BaZr_{0.44}Ce_{0.36}Y_{0.2}O_{3- δ} as the electrolyte (Fig. 6). The improved cell performance is due to the combination of the electrolyte with a NiO- $SrZr_{0.5}Ce_{0.4}Y_{0.1}O_{3-\delta}$ cathode substrate. From these results, the calculated amount of electricity required to produce 1 N-m³ of hydrogen is 4.2 kWh, and is lower than the 5 kWh required for the same amount of hydrogen using ordinary water

Figure 4. TEM images of suspended water film in CNT under high vacuum conditions (Tomo *et al., Nano Letters,* 18(3), 1869–1874, 2018).

Figure 5. (a) Optical, (b)-(c) atomic force microscopy, and (d) FESEM images of agglomerates after 100 condensation/evaporation cycles, (e) Height profile of agglomerates along the dotted-line trace in (c) as a function of condensation cycles (Cha *et al., Nano Letters*, 17(12), 7544-7551, 2017).

Figure 6. (a) Schematic illustration of a proton conducting solid oxide electrolysis cell, (b) I–V curves from the steam electrolysis cell measured at 550 and 600°C with a $BaZr_{0.44}Ce_{0.36}Y_{0.2}O_{3-\delta}$ electrolyte (Leonard *et al., Int. J. Hyd. Ener.,* 42 (7), 3926-3937, 2017).

electrolysis. The SOEC performance is the first step to the short-term milestone "Demonstration of SOFC and SOEC operating at 500°C in the division's Project 3-2.

Durable Ir/MWNT based oxygen-evolving electrode for water electrolysis: A new method to prepare Ir nanoparticles (~ 1 nm diameter) on multi-walled carbon nanotubes (MWNT) was developed (Fig. 7). Due to the small size of the Ir particles coupled with the high electrical conductivity of MWNT network, the electrocatalyst (MWNT/PBI/Ir) exhibits higher mass activity (1533 Ag⁻¹ @ 1.6 V in single cell) compared to previously reported electrocatalysts (<900 Ag⁻¹ @ 1.6 V). In addition, due to the excellent oxidation resistance of the MWNT, the water electrolyzer utilizing the MWNT/PBI/Ir as the anode exhibited remarkable durability for over two weeks (~25,000 min) at a current density of 1.0 A cm⁻² at 80°C. This result is the first example of a carbon-based anode for water

Figure 7. (top) Illustration showing preparation of MWNT/PBI/Ir catalysts along with an image of the catalyst (left) and its performance (right). (Fujigaya *et al., J. Mat. Chem.* A, 5, 10584-10590, 2017).

electrolysis which exhibits both high activity and durability, and *provides an alternative solution for the short-term milestone in Project 1 "PEC: Identify theory for anode and cathode operability up to 120°C and minimized overpotential with high durability up to 10⁵ potential cycles."*

Revealing the role of metal in non-precious-metal catalysts: By selectively removing Fe while preserving N and C species from a non-precious metal (NPM) oxygen reduction reaction catalyst it was shown that the presence of Fe in NPM catalysts contributes directly to their ability to reduce oxygen to water via a 4 e⁻ pathway and at lower overpotentials than catalysts featuring C and N sites alone. Catalysts without Fe, and even those containing some residual metal, reduce O₂ with larger overpotentials and favor the much less desirable 2 e⁻ pathway for oxygen reduction in both acidic and alkaline conditions. The work targets the *mid-term milestone of the division's Project 1* and reveals the direct involvement of the metal in the active site of non-precious metal catalysts and provide important guidance for future catalyst improvements (Varnell *et al., ACS Energy Lett., 3*, 823–828, 2018).

CO₂ Capture and Utilization (Lead PI, Prof. Fujikawa)

Membrane materials for CO₂/H₂ separation: One of the division objectives is to separate CO₂

in pre-combustion CO₂ capture, where CO₂ is separated over H₂. The required membrane performance, CO₂ permeance and selectivity, is 100 GPU (1 GPU=7.5×10⁻¹² m³ (STP)/(m²·s·Pa)) and 30, respectively. The I²CNER developed 2-(2-aminoethylamino)ethanol-containing polymeric membranes exhibit CO₂ permeance of 155 GPU which exceeds the target at CO₂ pressure of 1.0 MPa and 80 % relative humidity. *In comparison to the current benchmark (41 GPU, reported by Ohio State University), the I²CNER membrane displayed the highest CO₂ permeance even under higher CO₂ pressure*. Our research has also revealed the mechanism of CO₂ permeation at the molecular level, suggesting that CO₂ migrates through the membrane in a bicarbonate ion

form even under higher pressure. Currently, our efforts are focused on the development of a hollow fiber membrane module to explore the scaling-up of our membrane project to a demonstration level for technology transfer.

Membrane materials for CO₂/N₂ separation: For technology applications of membranes for CO₂ separation over nitrogen, further improvement of the gas flux performance is required: CO₂ permeance should exceed 4000 GPU which is the target in our Division's roadmap. Our research has demonstrated that membrane thinning markedly improves the gas flux performance, and hence our

efforts have been directed to preparing ultimately-thinned membranes at the nanometer scale

without leaks. (nanomembrane) aas We succeeded manufacturing in free-standing nanomembranes that are poly(dimethylsiloxane)based with high CO₂ solubility. To the best of our knowledge, our developed membranes with the thickness of only 150 nm reproducibly showed preferential CO separation with world highest CO₂ permeance of about 6500 GPU. This achievement on CO₂ permeance exceeds our roadmaps target value (4000 GPU) and the current benchmark (1000 GPU by MTR Inc., USA). Surprisingly, our membranes captured CO₂ from CO₂/N₂ mixture

Figure 9. I²CNER free-standing nanomembrane with world record high CO₂ flux.

with a CO₂ concentration of 1000 ppm under atmospheric pressure conditions. This finding expands the relevance of our research goals beyond the capturing of CO₂ at fire powered plants to the entirely new area of direct CO₂ capture from the air (Selyanchyn and Fujikawa, *Sci. Tech. Adv. Mater.*, 18, 816-827, 2017)

CO₂ Storage (Lead PI, Prof. Tsuji)

Continuous and accurate monitoring system for injected CO₂: In Carbon Capture and Storage (CCS), the monitoring of injected CO_2 is crucial for (a) predicting the risk of CO_2 leakage from reservoirs, (b) increasing the efficiency of CO_2 injection and reducing the cost, and (c) reducing the risk of injection-induced seismicity. To date time-lapse seismic surveys have been used to monitor injected CO_2 distribution. However, the interval of the time-lapse surveys is long due to their high cost and it is difficult to continuously monitor the injected CO₂. In addition, continuous monitoring of the dynamic CO_2 behavior is crucial for detecting accidental incidents, such as CO_2 leakage. To address these issues, we first developed a continuous monitoring approach to estimate spatiotemporal variation of seismic velocity using ambient noise (Nimiya et al., Sci. Adv. 3, p e1700813, 2017). Since this method constructs virtual seismic data from noise, we can extract subsurface information using only passive seismometer data. However, the disadvantage also of this monitoring system that relies on ambient noise is that the temporal variation of ambient noise would decrease the monitoring accuracy. To overcome this problem, we have developed a new novel monitoring method for injected CO₂ using a continuous and controlled seismic source. This new monitoring system generating controlled seismic signal is cost-effective, with high temporal resolution and accuracy. By deploying this system to the ongoing CCS project in Canada, we successfully identified spatial and temporal variation in the shallow subsurface (Ikeda et al., J. Geophy. Res. 122, 2859-2872, 2017). High spatial resolution of our approach makes it possible to identify leaked CO₂. Also, the system's low cost and high temporal resolution are particularly attractive for long-term monitoring of sequestered CO₂. This effort directly addresses the short-term milestone of Project 3 of the CO₂ Storage Division (Field-scale CO₂ investigation), specifically the milestone: Develop effective monitoring system.

Direct numerical simulation of microfluidics experiments on liquid CO₂-brine drainage: A complex interplay of capillary, viscous, buoyancy, and surface tension forces at the pore scale plays an important role in governing the macroscopic multiphase flow behavior of CO₂-brine systems. Many studies of two-phase flow in porous media demonstrate that inertial forces are negligible under realistic flow rates, so the only two dimensionless parameters of relevance are the capillary number (Ca) and viscosity ratio (M). To gain new insights into fundamental processes at the pore scale, we have compared fluid behavior derived from lattice Boltzmann simulation to microfluidics experiments of CO₂-brine at reservoir conditions for realistic rock geometry. We found that inertial effects are important for CO₂ drainage due to the low viscosity of the CO₂ phase and the localized high velocities that result during rapid pore invasion (so-called "Haines jumps"; Chen *et al.*, J. *Contaminant. Hydrol.*, in press). Therefore the traditional view that two-phase flow is governed only by Ca and M is incomplete, and the Reynolds number must also be considered. The research leads to new understanding of pore-scale physics which allows for more accurate prediction of large-scale behavior of injected supercritical CO₂ in industrial scale CCS projects. *This effort directly addresses the short- and mid-term milestones of Project 2 (Pore-scale CO₂ investigation), specifically the*

milestones: (1) Model injected CO₂ behavior and (2) Increase storage capacity and security by enhanced residual and solubility trapping.

Hydrogen Materials Compatibility (Lead PI: Dr. Somerday)

Effect of trace gases on friction, wear, and fracture

The following work represents progress toward milestones in Project 1 (establish validated physical descriptions of effects of qas impurities on H₂-assisted cracking) and Project 3 (establish physical description of effects of environment and surface modification of various materials in dry and *lubricated contact).* The common link in these research activities is identifying fundamental effects of trace gases on material behavior (friction, wear, and fracture). The motivation for the Project 3 accomplishment is recognizing that friction between metals and diamond-like carbon (DLC) coatings is sensitive to trace gases. In previous accomplishments, the effects of trace water vapor on friction for DLC/metal couples were systematically defined. Leveraging these insights, the study has been extended to examine the effects of O_2 and water vapor on friction for DLC/metal couples (Kurahashi et al., Micromachines, 8, 217-231, 2017). The emerging results shown below indicate that there is an optimum O_2 concentration to maintain low friction in N_2 gas with negligible trace water. These pin-on-disk sliding experiments were complemented with Raman spectroscopy, which revealed that low friction was associated with transfer films of structured amorphous carbon on the metal counterface. The formation of these transfer films is affected by the trace gases. This approach to characterizing and optimizing DLC coatings is differentiated from similar studies by its focus on surface science to investigate the tribo-interface. The Project 1 accomplishment was inspired by previously reported achievements, in which physical descriptions and an associated model were presented for oxygen-inhibited, hydrogen-assisted cracking in steels. Advancing this study on oxygen inhibition, the effectiveness of CO in mitigating hydrogen-assisted cracking was comprehensively studied, including the effect of steel strength level (Komoda et al., Proceedings ISOPE, TPC-0866, 2018). As summarized below, when H₂ gas contained 1000 vppm CO, hydrogen-assisted cracking was pronounced for the higher-strength steel (HV619), but it was almost completely suppressed (fracture toughness ~90% of the value measured in nitrogen) for the lower-strength steel (HV329). These results indicate that CO reduces hydrogen uptake into the steel but does not prevent it completely. This study has significant technological impact, since mitigating hydrogen embrittlement through CO impurities can lead to lower costs for hydrogen refueling stations, as recognized by the sponsor for this project (Air Liquide).

Figure 10. (left) Friction coefficient as a function of sliding distance for DLC-coated disk/iron pin in N_2 with controlled O_2 levels and water vapor <5 vppm. (right) The effect of steel hardness (strength) on the mitigation of hydrogen-assisted cracking by CO impurities (100 to 10,000 vppm) in H_2 gas.

2. Advancing fusion of various research fields

Using **bioinspiration**, Prof. Miljkovic of the Thermal Science and Engineering division is exploring the boundaries of wetting through the fusion of mechanical engineering, material science, entomology, chemistry, and biotechnology. The team was the first to show that wettability in nature is correlated with taxonomy, life cycle and reproductive strategies, rather than habitat. This work enables the development of artificial surfaces for energy and water applications such as anti-icing, self-cleaning, anti-fogging, water harvesting, and enhanced phase change heat transfer (Oh *et al.*,

ACS Applied Materials & Interfaces, 9(32), 27173–27184, 2017).

Fusing **biochemistry with chemistry and structural biology**, Prof. Ogo and his group (*Science*, 537, 928-932, 2017) determined the crystal structure of a new form of a [NiFe]-hydrogenase enzyme in both the oxidized and reduced states. In the oxidized state, the Ni center (where substrate binds) adopts an unprecedented six-coordinate geometry. The structure is potentially significant because it illustrates a probable mechanism by which the enzyme could prevent poisoning by O₂. Normally the Ni center is four- or five-coordinate, which allows H₂ to approach the Ni. The group proposed that the enzyme is able to switch geometries to either effect catalysis or to protect itself from aerobic degradation. This knowledge will be integrated into the designs of new bio-inspired catalysts.

Fostering close collaborations with other KU units and continuing the **Applied Mathematics for Energy Initiative** from FY2015 and 2016, I²CNER initiated three additional projects in FY2017:

i) Prof. N. D. Hoa, "Distributed grid optimization with renewable generation," I²CNER and Institute of Mathematics for Industry (IMI).

ii) Prof. H. Watanabe, "Solar power assisted hydrogen production and carbon-free high efficiently thermal power generation", Department of Mechanical Engineering.

iii) Prof. H. Matsumoto, "Carbon nanotube-based non-precious metal electrocatalysts for fuel cell, water electrolyzer and metal-air battery devices," I²CNER.

The above three projects along with the 7 ongoing projects from FY2015 and FY2016 strengthen the I²CNER fusion portfolio in the area of integration of renewables with the smart grid, initiate new activities in the area of power generation, and accelerate our quest for non-precious metal catalysis.

In FY2017, the Applied Mathematics thread of I²CNER's research was largely focused on two broad topics: computational materials and physics and mathematics of the emerging smart grid. Also a track in biomathematics was continued. More specifically:

Two groups addressed the area of **Modeling and Characterization of Porous Materials** for CO₂ storage. The group of Prof. Triades (IMI) and PI Christensen aimed at modeling the transport dynamics of multiphase flows in porous media. The problem is complicated as it involves highly irregular, fractal boundaries of the media, and complex interactions between the components. The group used the lattice Boltzmann method (LBM) to handle complex boundaries and interfaces between multiple phases, and Lagrangian fluid particle tracking using LBM velocity fields. The models were used to investigate the key parameters of the flows in porous media, otherwise accessible only through complex and necessarily incomplete experiments. They investigated the dependence of anomalous dispersion on the pore network geometry and assumed molecular diffusivity. The group published one paper (Fakhari *et al., Adv. Water Resour.,* 114, 119-134, 2018).

The group of PI Tsuji and Prof. Shirai (IMI) used the techniques of applied algebraic topology (known as persistence homology) to quantify properties of porous materials. Persistent homology allows one to track the properties of complex geometric structures affecting their topology (connectivity, "loopiness") across arbitrary scales. The results of the group indicate how permeability and elasticity of sandstones are reflected in their persistence diagrams. Modeling the diffusion in porous materials using random walks is another research direction. The group published one paper (Tsuji *et al.*, Applications of Persistent Homology and Random Walk, In "Agriculture as a Metaphor for Creativity in All Human Endeavors," pp. 95-109, doi:10.1007/978-981-10-7811-8_11, 2018).

The **Computational Physics** track was focused on models and computations of expanding flames (combustion) for efficiency increase in power generation. The team involves Prof. Matalon (Illinois) and Prof. Matsue (I²CNER & IMI). The modeling of the expanding flames, using numerical solution of systems of parabolic partial differential equations which is the key tool in the study, was tested and corroborated by comparisons with existing experimental data. The key causes of complications in the modeling are the necessity to work across several scales and the inevitability of chaotic, turbulent regimes in the solutions. Addressing several scales results in unstable solutions and the presence of turbulence prevents the standard deterministic approaches. The team looked at complementary regimes, where different techniques could be applied: Prof. Matsue attacked the problem using quasi-spectral methods; Prof. Matalon focused on weakly-nonlinear approximations. Both approaches led to stable numerical schemes that are implemented. The research will expand toward explorations of the resulting behavior, understanding the scaling laws in the models, and

interactions with experimentalists to fine-tune and adjust the models. So far, there has been one conference presentation (Matalon, Proceedings of the Seventieth Annual Meeting of the APS Division of Fluid Dynamics, Denver, CO., November 2017).

Three research groups work on **Mathematics of Smart Grid**: i) The optimization group, consisting of Prof. Bose (Illinois) and Prof. Hoa (I²CNER & IMI). One research direction addresses game theoretic aspects of electricity markets. Networked structure of the agent interactions complicates the structure of the solutions and leads to potential losses of the efficiency. The project aims at the quantification of these losses and characterization of mechanisms to overcome it. Another research thread deals with non-convex optimization, a critical tool for finding optimal production and distribution plans in uncertain situations characterized by the presence of renewable energy sources and microgeneration. To this end, the team focused on a class of optimization algorithms, the augmented Lagrangian methods (ALM), the subgradient methods and the Mirror-Descent method. They are exploring the use of ALM with Jacobi-type updates, such that within each iteration the step is scalable with the size of the problem. The goal is to find a unified analysis framework that yields theoretical guarantees on the convergence rates of these algorithms. The group already published one conference paper (Doan et al., submitted for publication to IEEE Control System Letters and for presentation at IEEE Conference on Decision and Control 2018); ii) The group of Profs. Murata (KU) and Hirose (IMI) deal with the patterns of energy consumption in smart grid. Prof. Murata addresses the important question of shaping the customer demand using a demand response programs. His group modeled the (potentially irrational) customer behavior using the ideas from the reinforced learning theory and developed reverse optimization tools aimed at creating system of incentives shaping the demand in a prescribed way. Two conference papers were published (Murakami et al., Proceedings of 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC2017), 2754-2759, 2017; Murakami et al., The Papers of Joint Technical Meeting on "Systems" and "Smart Facilities", IEE Japan, 113-118, 2017). Prof. Hirose's group is looking at the statistical models to analyze the data of power consumption in order to create predictive models. To achieve that, the group is aiming to cluster the energy consumers based on the patterns (time series) of their usage, creating a few classes that can be used then for forecasting.

The research area of **Biomathematics** is represented by the group of Prof. Nishii and Mr. Koda (IMI), and Drs. Mochida and Onda (RIKEN). Their goal is to perform statistical analysis of the sequenced DNAs of Brachypodium, to understand which systems induce heterosis, a genetically driven difference in growth rates. Auto-regressive models with exogenous variables (ARX models) are deployed for the analysis. One journal paper has already been published (S. Koda, *et al.*, Frontiers in Plant Science 8, Article 2055, 2017 (DOI:10.3389/fpls.2017.02055).

3. Establishing international research environment

- * Describe what's been accomplished in the efforts to raise the center's recognition as a genuine globally visible research institute, along with innovative efforts proactively being taken in accordance with the development stage of the center, including the following points, for example:
- Efforts being developed based on the analysis of number and state of world-leading, frontline researchers; number and state of visiting researchers; exchanges with overseas entities
- Proactive efforts to raise the level of the center's international recognition
- Efforts to make the center into one that attracts excellent young researchers from around the world (such as efforts fostering young researchers and contributing to advancing their career paths)

Globalization by the numbers

In FY2017 there was a vast amount of international activities that enhanced I²CNER's global visibility. I²CNER hosted 5 (37 in total since inception) international symposia; held 17 seminars in the Institute Interest Seminar Series (IISS) (120 in total since inception) with 30 speakers (212 in total since inception) of which 21 were non-Japanese (127 in total since inception); 20 seminars in the I²CNER Seminar Series (148 in total since inception) with 21 speakers (152 in total since inception) of which 17 were non-Japanese (99 in total since inception). The Institute's researchers were responsible for organizing, co-organizing, or serving on the scientific committees for 17 (176 in total since inception) international conferences, 21 international conference sessions/symposia or workshops (212 in total since inception), and 10 I²CNER international workshops (58 in total since inception). Our researchers have given 75 keynote, plenary and invited presentations in international conferences and fora (450 in total since inception). In addition, our researchers have joint publications with researchers from 60 new institutions (681 in total since inception) around the world

and hosted 82 (269 in total since inception) internationally recognized researchers for scientific interaction and exchange. Our researchers also hosted 95 (298 in total since inception) distinguished visitors (of which 44 were distinguished researchers) at Kyushu University from across the world. Additionally, we initiated interactions with 4 internationally recognized research centers/universities, namely, the Paul Scherrer Institut, and Laboratory of Inorganic Chemistry, ETH Zurich, Switzerland, the Helmholtz Institute Forschungszentrum Juelich, the Southwest Research Institute, and the University of Göttingen. Lastly, we hold agreements with 5 internationally recognized research centers/universities: Illinois, the National Fuel Cells Research Center (NFCRC) of the University of Irvine, ECOSTORE, a consortium based in the European Union, the University of New South Wales, SINTEF/NTNU of Norway, and the California Air Resources Board (CARB). As of March 31, 2018, I²CNER has a total of 24 partner institutions in the U.S., Europe, and Asia. Lastly, in FY2017, I²CNER placed 11 (37 in total since inception) of our researchers at various Japanese (excluding KU) and international institutions.

Participation of Overseas PIs and Researchers

All 9 of our overseas Principal Investigators are top-world researchers who are actively involved in I²CNER's research operations. They spend between one to seven weeks at Kyushu and participate in events and exchange opinions on collaborative research projects with their Kyushu counterparts. By way of example, Prof. Kilner, an international authority in the field of ionic and mixed conducting ceramics, spent eight weeks in I²CNER during FY2017. Jointly with Kyushu faculty, he won international awards and research program grants, e.g. Core-to-Core, and hosted one postdoc from I²CNER at Imperial College, London for 2 months. Dr. Somerday is a leading scientist in the area of mechanical metallurgy. He visited I²CNER for 2 weeks and hosted a group of researchers from I²CNER at the Southwest Research Institute for the Hydrogen Materials Compatibility Division retreat. Aside from PIs, I²CNER hosted world top-level researchers from overseas on a regular basis. For a brief list of distinguished visitors from abroad, please see Appendix 5.

Illinois Satellite

The Satellite Institute at the University of Illinois at Urbana-Champaign facilitates cooperative research activities and personnel exchanges. In addition to conducting Institute related research, the Satellite serves as the base for identifying and engaging key research programs and faculty at universities and institutions nationally and internationally. The ongoing relationships between the faculty of Kyushu University and the University of Illinois at Urbana-Champaign are having a transformative impact upon I^2 CNER's overall research culture. Four of the efforts undertaken at the Satellite to promote the mission of I^2 CNER are as follows:

Satellite Faculty Composition

The Illinois Satellite faculty members are all internationally recognized researchers in their respective areas of expertise. They were specifically invited to complement the I²CNER research activities at Kyushu, and they are continually re-assessed based upon their relevance to the overall I²CNER vision and roadmap. As of March 31, 2018, there are seven Illinois Faculty and one WPI Principal Investigator participating at the Illinois Satellite. One member of I²CNER's External Advisory Committee (EAC), Dr. Robert Finley, is a retiree from the University of Illinois. In addition, there are former Satellite Faculty members who are still working with I²CNER: Prof. Ian Robertson, Dean of the College of Engineering at the University of Wisconsin-Madison (WPI Principal Investigator); Prof. Ken Christensen, Aerospace and Mechanical Engineering Department Chair at the University of Notre Dame (WPI Principal Investigator), Prof. Angus Rockett, Metallurgical and Materials Engineering Department Head, Colorado School of Mines (WPI Professor, member of I²CNER's IPRC).

Kyushu-Illinois I²CNER Undergraduate Exchange Program

The "Agreement on Academic Cooperation" between KU and Illinois helps the two universities to promote mutual understanding and strengthen their relationship. A "Student Exchange Program Agreement" between KU and Illinois was signed on October 24, 2014. The numbers of KU undergraduate students who visited Illinois are 5 (FY2013), 6 (FY2014), 6 (FY2015), 6 (FY2016), and 6 (FY2017). During their monthly visit, the students observe and assist with research in Illinois laboratories under the supervision of Satellite faculty and graduate students, participate in group meetings, complete weekly "check-ins" with the Director, take tours of local engineering companies, and interact with Illinois' Center for East Asian and Pacific Studies (CEAPS) to enhance their cultural

experience of the university, including lunches and activities with Illinois undergraduate student "buddies". At the end of their stay, the KU students give presentations on their research and cultural experiences at Illinois in a mini-workshop. In FY2016, two of the students were involved in research that *resulted in a paper publication: LANGMUIR, DOI: 10.1021/acs.langmuir.7b03948*.

Partnership for International Research and Education (PIRE)

The joint PIRE award to Illinois and Kyushu, "Integrated Computational Materials Engineering for Active Materials and Interfaces in Chemical Fuel Production," is a result of I²CNER's successful fusion of computational science with experiment, and was awarded beginning in FY2015 for a total of 5 years. The PIRE project brings together researchers from I²CNER (both Illinois and KU), Northwestern University (NU), Imperial College, London, and the University of California, Berkeley (UCB). In FY2017, under the 2-month PIRE/x-FU(s)ION (eXchange: FUkuoka, Illinois, califOrnia, Northwestern) exchange program, 5 American students (3 from Illinois, 1 from NU, and 1 from UCB) carried out research in I²CNER from June 11-August 13, 2017.

Total Graduate/Undergraduate Student Visits to KU

As of March 31, 2018, the Institute has hosted a total of 63 graduate/undergraduate students from various institutions around the world, including Illinois, since its inception. The numbers of visiting students are 1(FY2010), 9 (FY2011), 6 (FY2012), 7 (FY2013), 7 (FY2014), 6 (FY2015), 10 (FY2016), and 17 (FY2017) of which, 1, 7, 1, 3, 1, 3, 8, and 14, respectively, stayed for more than a month at KU. Of the total 63, 34 students were from Illinois and 19 of these students stayed for more than a month.

Collaborative Foreign Exchange Program

I²CNER's "Collaborative Foreign Exchange Program" is in place in order to encourage young researchers to visit our overseas collaborating institutions. In FY2017, five young researchers had their proposals approved: two visited Illinois, two visited the University of Texas, Austin, and one visited the University of Edinburgh for the extended period between 1 and 5 months.

I²CNER Young Researchers' Job Placement after Leaving the Center

The environment at I²CNER provides a rich platform for young researchers to pursue technology impacting research in a highly international setting. To date, a large number of I²CNER young researchers have leveraged their appointments at the Institute to advance their professional careers. By way of example in FY2017, an I²CNER Assistant Professor, Nicola Perry, was recruited as Assistant Professor at the University of Illinois at Urbana-Champaign beginning January 1, 2018. Dr. Arnaud Macadre accepted a position as an Associate Professor at Yamaguchi University beginning April 1, 2018; Dr. Jihui Jia accepted a position as an Assistant Professor at the Ningbo Institute of Industrial Technology, China. For more examples of how career paths are being established for our researchers, please see Appendix 3-1 (section 1-1: Special mention).

I²CNER International Research Programs and Activities

I²CNER is establishing several different research efforts and programs held not only at Kyushu University but also in collaboration with and at international locations. Some of the efforts undertaken by I²CNER to internationalize its research portfolio and promote global visibility are as follows:

JSPS Core-to-Core Program

This is an international joint research project led by PI Matsumoto. The project provides a total 90 million JPY (15.8 million JPY in FY2017) funding for joint research carried out between I²CNER, Imperial College, London, Paul Scherrer Institut (PSI, Switzerland), and the Massachusetts Institute of Technology on "Solid Oxide Interfaces for Faster Ion Transport (SOIFIT)." Three of I²CNER postdocs visited the counterpart research institutions for longer than 1 month: Dr. V. Thoreton in Imperial College, London for 1 month; Dr. D. Klotz in MIT for more than 3 months; Dr. K. Ghuman Kaur in PSI for 2 months.

Partnership with the University of Göttingen

PI Reiner Kirchheim, an elected member of the United States National Academy of Engineering, and

I²CNER's Director, lead the collaboration between Kyushu University and the University of Göttingen to establish an International Research Training Group that is to be co-funded by the DFG and JSPS. On January 6, two professors from the University of Göttingen visited I²CNER. In April 2018, a two-day KU/Göttingen workshop was also organized in Göttingen so that the Kyushu and Göttingen teams identify and construct the research themes of the joint proposal. In the proposed joint Ph.D. program, Ph.D. students will visit the counterpart institute for 1 year to participate in research/educational activities.

I²CNER Annual Symposium 2018

The 2018 I²CNER Annual Symposium, which was titled "Challenges in Thermal Science and Engineering towards a Sustainable Society", was held on January 31, 2018 and was attended by 166 participants (86 from abroad.) The vision of the symposium provided a platform for discussion and debate on the science and engineering for efficiency increase in power generation, smart utilization of waste heat, nanomaterials and metal-organic frameworks for efficient heat pump cycles, next generation working fluids, and nanoscale transport and heat transfer mechanisms. The Symposium included 2 keynote lectures (i) entitled "Thermal Waste Heat Utilization for Achieving Super Smart Community" by Prof. Takao Kashiwagi (Tokyo Institute of Technology) and (ii) entitled "Different Regimes of Pool Boiling" by Prof. Gautam Biswas (Indian Institute of Technology, Guwahati).

Japan-France Workshop on Nanomaterials

The 12th Japan-France Workshop on Nanomaterials (also known as 3rd WPI Workshop on Materials Science) was held in Kyushu on May 17-19, 2017, and attended by 79 participants (40 from abroad), including the Directors of 4 WPI institutes (AIMR, MANA, iCeMS and I²CNER) and top-level researchers from 10 French Centers of Competence in Nanoscience (C'Nano).

I²CNER Seminar Series

One of the most important goals of the I²CNER Seminar Series is to engage key members of the international community from academia, national laboratories, industry, and government agencies (policy makers). In FY2017, the Institute hosted a total of 21 speakers (17 non-Japanese) in 20 I²CNER Seminars. The quality of the seminar speakers is exemplified by the credentials of the speakers listed in Appendix 5.

Administrative Support for Foreign Researchers' Transition into Japanese Society

As of March 31, 2018, the administrative office consists of 20 staff members including the Administrative Director and the Associate Administrative Director (Head of Administration), and is divided into four groups:

- 1. General Affairs and Human Resources (6 members)
- 2. Accounting and Contracting (6 members)
- 3. Research Support and International Affairs (3 members)
- 4. Public Relations (3 members)

These four groups act as a support system to the Institute's researchers and administration under the supervision of the Administrative Director and the Associate Administrative Director.

The I²CNER Administrative Office is in close communication with the existing KU International Student and Researchers Support Center, and offers full-time support to overseas researchers in the invitation procedures, including visa application processing and accommodations on campus. To help overseas researchers adapt smoothly into the new culture and research environment, the Administrative Office i) offers additional training and workshop opportunities, ii) introduced an English version of various application forms, guidelines, and university regulations, and iii) introduced an English version of the Web Safety Training Module, which all new I²CNER researcher are required to complete prior to conducting experiments in the laboratory. Additionally, the Administrative Office provides extensive living assistance with medical checkups, off-campus accommodations, travel arrangements for family members, and introduction to the Japanese social insurance system.

For invited international researchers, university accommodation facilities are available, or arrangements are made for fully furnished private apartments with easy access to Kyushu University. "Ito Guest House," an on-campus housing accommodation for short-stay researchers from overseas, was built and opened on April 6, 2012 in the Center Zone of Ito campus, where I²CNER is located.

Director as a Fukuoka City Ambassador

On February 1, 2018, Director Sofronis was reappointed by the Mayor of the City of Fukuoka as a city Ambassador for two additional years. His duties include the advancement of the international image of Fukuoka and the organization of international conferences in the city. In fact, Director Sofronis is currently in the process of putting together a committee to submit a proposal to hold the 2024 World Hydrogen Energy Conference (WHEC) in Fukuoka. This would be a joint proposal from the city of Fukuoka and Kyushu University and if successful, it would attract approximately 1,800 attendees.

4. Reforming the research organization

- * If innovated system reforms generated by the center have had a ripple effect on other departments of the host institutions or on other research institutions, clearly describe in what ways. * Please describe the center's operation and the host institution's commitment to the system reforms.

Kyushu University Platform of Inter/Transdisciplinary Energy Research (Q-PIT)

In order to promote the concept of I^2 CNER as the model project for internationalization of research and education in the University, and integrate research efforts and education on energy across its various units, KU established the "Kyushu University Platform of Inter/Transdisciplinary Energy Research (Q-PIT)". I²CNER plays a key role in this organization by helping to cross-pollinate a wide range of collaborations on energy research between KU research units of diverse disciplines including social sciences, economics, law, and political sciences. This will allow I²CNER to capitalize on opportunities to broaden and enrich its energy portfolio while also helping Q-PIT advance its mission to catalyze interactions between disparate disciplines and units.

As of March 31, 2018, Kyushu University has allotted 5 tenured faculty positions to Q-PIT. To date, 3 tenured Professor positions have been filled, and a total of 14 faculty members are engaged in energy research as Q-PIT Faculty. Director Sofronis is a member of the Q-PIT strategic and faculty recruiting committees.

KU Energy Week in Support of Q-PIT

"Kyushu University Energy Week" is a week-long sequence of international workshops and symposia hosted by various energy research centers of Kyushu University. KU has held Energy Week during the last week of January since 2016 in order to support Q-PIT becoming an international hub for "future energy" research and education. Energy week is centered around I²CNER's Annual Symposium and International Workshops organized by I²CNER's divisions. The 2018 KU Energy Week was held from January 29 through February 2 with a theme of "Energy Intelligence without Borders for Protection of our Future." The 5-day event welcomed a total of over 1,800 participants from academia, industry, and government, both locally and overseas.

Switching to Academic Quarter (4-term) System

In FY2017, KU made a noteworthy academic change by implementing the Academic Quarter (4-term) System in order to facilitate student exchange programs from universities in the U.S., such as Illinois. The system also enables cross-appointed faculty from overseas to teach courses more easily at KU and makes it possible for KU faculty to participate in research/teaching activities at overseas partner institutions, vice versa.

Efforts to Hire Female Researchers

It is a priority within the Institute to hire and retain excellent female researchers. The Director specifically reviews applications by every woman applicant for any postdoc or faculty position. As a result, the number of female researchers in I²CNER has been 4 (FY2010), 7 (FY2011), 9 (FY2012), 12 (FY2013), 11 (FY2014), 11 (FY2015), 10 (FY2016), and 14 (FY2017). These numbers, although not at the desired level, are certainly larger than corresponding totals in the other sciences, math, and engineering units of KU. The fact that there are now 14 women researchers in I²CNER is a direct result of the Director's concentrated efforts to make the I²CNER environment more attractive to women applicants. Among the 19 newly hired faculty and postdocs in FY2017, five were women: 1 was an Associate Professor, 1 was an Assistant Professor, and 3 were postdocs. As of March 31, 2018, I²CNER has a total of 27 women researchers: 14 at KU, 9 at Illinois, and 4 at other

international/domestic institutions.

New Initiative on Tenure-Track Hires

I²CNER and the Institute of Mathematics-for-Industry (IMI) jointly hired 2 tenure-track assistant professors, Drs. K. Matsue and N. D. Hoa, in Fall 2016 after submitting a joint proposal to KU's newly initiated tenure-track faculty program. These two faculty work to foster the I²CNER applied math for energy research initiative and strengthen the ties and interaction between I²CNER and IMI. In FY2017, the two faculty visited Illinois respectively for 1 month and for 5 months under the framework of the I²CNER Collaborative Foreign Exchange Program. The visits advanced the collaborations reported in Section 2.

Super Research Assistant Program

I²CNER instituted the "Super Research Assistants (SRA)" Program in order to recruit and support excellent graduate students to carry out their PhD thesis work under the supervision of our faculty within the various divisions of the Institute. These SRAs, who are supported by the WPI fund, are carefully selected from a large pool of KU graduates and are supervised by young faculty. This helps I²CNER young faculty develop educational and research supervision skills. In FY2017, I²CNER employed a total of 10 SRAs.

Plans for Graduate Student Exchange

The I²CNER Undergraduate Exchange Program has become such a success that a similar program is being explored for graduate students between KU and Illinois. In order to explore this possibility, Prof. Takamatsu, Dean of the KU School of Engineering, visited the Illinois College of Engineering in November, 2017. During his visit, Dean Takamatsu met with the leadership team of the Illinois College of Engineering, including the Dean, and discussed how to establish an institutionalized exchange program for graduate students between the KU Graduate School of Engineering and the Illinois College of Engineering.

I²CNER Faculty Involvement with Teaching

I²CNER continues its tradition of collaborating with KU's School of Engineering, Graduate School of Engineering, and Graduate School of Integrated Frontier Sciences because it brings faculty into the classroom who have international experiences with cutting-edge research.

Additionally, KU is seeking the involvement of I²CNER in KU's new <u>School of Interdisciplinary Science</u> <u>and Innovation</u>, which has now opened in April 2018. A new international energy course will be developed, in which I²CNER faculty are expected to be involved with teaching, with the purpose being to contribute to the international education of Japanese students.

I²CNER will play a crucial role in the KU "Excellent" Graduate School initiative that will establish an "Excellent" Graduate School in KU with Q-PIT at its core. A number of the admitted students to this "Excellent" Graduate School will be advised/supervised by I²CNER faculty. KU envisions that I²CNER's faculty involvement in this innovative and attractive graduate education program will advance the research/educational capabilities of KU and foster the international graduate education culture throughout KU.

Cross-Appointment Employment System

In view of the successful model of Director Sofronis' cross-appointment case, the KU Administration institutionalized a cross-appointment employment system in March 2015. In FY2017, plans for the cross-appoint of Prof. Baryshnikov as a Director of the US-Japan Institute for Applied Math for Energy (US-Japan IAME) are in place, and discussions have begun on how to process the appointment through the system. The US-Japan IAME involves mathematicians, engineers, and theorists from Illinois, KU, and other research institutions such as the University of Hawaii at Manoa.

Intra-University Faculty Transfer System

By virtue of Kyushu's "Intra-University Faculty Transfer System," which enables flexibility in allocating faculty within the University, in FY2017, 8 senior-level faculty were transferred to I²CNER and served as the core Kyushu-based PIs of I²CNER.

I²CNER's Merit-based Salary System/ KU's New Merit-based Annual Salary System

In view of the effectiveness of the I²CNER's Merit-based Salary System, Kyushu University adopted and introduced this system across all units. As of April 1, 2017, 339 Kyushu University faculty (16.4%) are paid within this system. Kyushu University's long-term goal is to pay approximately 20% of its faculty within this system.

5. Efforts to secure the center's future development over the mid- to long-term

- * Please address the following items, which are essential to mid- to long-term center development:
- Future Prospects with regard to the research plan, research organization and PI composition; prospects for the fostering and securing of next-generation researchers
- Prospects for securing resources such as permanent positions and revenues; plan and/or implementation for defining the
- center's role and/or positioning the center within the host institution's institutional structure
- Measures to sustain the center as a world premier international research center after program funding ends
 Host institution's organizational reforms carried out for the Center's autonomous administration simultaneously with the creation
- of the Center.

Research Plan Organization and PI Composition

I²CNER's grand challenge is to contribute to the creation of a carbon-neutral society (CNS) through basic research underlying energy technology which, when deployed, leads to a large reduction of greenhouse gas (GHG) emissions (70-80% by 2050 from 1990 levels). Executing this vision, I²CNER plans to advocate for carbon-neutral energy solutions to the public and become a technology solution resource for government agencies on energy policy and investment. Such carbon energy neutrality is vital for Japan as the future energy mix must account for uncertainty regarding nuclear energy deployment, CO_2 management, and the fact that the world energy demand and resource availability are highly dynamic.

On the technical side, I²CNER will continue pursuing electrochemical energy conversion, conversion of molecular photoenergy, thermal science and engineering, molecular catalysis, materials in aggressive environments, and CO₂ capture and storage technology or the conversion of CO₂ to a useful product. To address the loss of senior PIs due to retirements, two tenured young faculty have been elevated to the PI level as of April 1, 2018: Prof. Staykov for the advancement of our computational capabilities across division boundaries and Prof. Fujigaya, who has already discovered and developed electrocatalyst systems for fuel cells that set the benchmark of durability, to lead the efforts in low temperature fuel cells. The plan is also to elevate Prof. Kubota to the PI level to lead I²CNER's expansion into materials for aggressive thermal and chemical environments. In FY2018, I²CNER will also address research division reorganization in order to improve interactions among various research groups and teams.

I²CNER will continue to diversify its expertise and research portfolio to include the integration of renewable energy with the grid, the interaction of the energy networks with the environment, and social and economic dynamics. Toward this goal, collaborations are already in place through the "Competitive Funding Initiative." By way of example, Prof. Hirose uses machine learning to analyze data and discover customer behaviors that affect the power grid. Prof. Managi, who specializes in economics, investigates "welfare" models of energy, work, leisure, health, and finances to rank social and economic systems. Prof. Murata applies optimization theory to model residential energy consumption and accounts for customer behavior. Prof. Shirai uses Persistent Homology to understand porous materials for CO₂ storage. Prof. Baryshnikov (Illinois) works with IMI at KU to establish the US-Japan IAME in collaboration with EVP Wakayama. His area is in stochastic networks, their geometry, topology, and applications; topological data analysis; and nonlinear control systems.

The two tenure-track assistant professors who have been hired jointly with the Institute of Mathematics of Industry (IMI) lead specific math efforts directed to effective power generation (Matsue) and on scalable grid optimization (Hoa), both work jointly with faculty at the University of Illinois. I²CNER will continue to interact with, and assist with the mission of the Platform for Inter/Transdisciplinary Energy Research (Q-PIT) to identify the linkages between technology and society for future research and technology goals. In this framework, I²CNER plans to hire a tenured faculty in the area of energy transitions and socioeconomics of energy. Through such hires in mathematics and social sciences and partnering with IMI, I²CNER helps KU to collaborate in diverse fields/domains, such as natural science, mathematics, humanities, and social sciences.

Our large number of international research programs such as the PIRE Program, the Core-to-Core Program, and the planned International Research Training Group with the University of Göttingen

provide ideal platforms for the fostering and development of young researchers through visit exchanges that include extended overseas stays of Japanese researchers. I²CNER's promotion and tenure system offers its young faculty and postdocs the opportunity to advance their careers in a way that is internationally visible, and which has obvious implications for their career development beyond I²CNER. I²CNER young faculty have the opportunity to take long-term sabbaticals based on the Agreement on Academic Cooperation between KU and Illinois (signed in FY2014). By way of example, Prof. Hoa's fall 2017 visit to Illinois was a sabbatical visit.

I²CNER's Permanent Position within Kyushu University

Effective April 1, 2013, with the revision of the "Regulations of Kyushu University," I²CNER's position is clearly defined as a permanent Research Institute of Kyushu University without regard to the length of the WPI Program.

Through a change in KU internal policy, KU will accommodate I²CNER in "I²CNER Building 1" with reduced rental fees, freeing ~100 M JPY for new investments in research and technology initiatives. Even after the WPI Program ends, KU will continue to provide space for the program in parts of I²CNER Buildings 1 and 2. This key resource is provided as "President's Discretionary Space" in an effort to support the world-class research conducted at I²CNER. To expand I²CNER fusion initiatives, some Q-PIT faculty from the humanities, social sciences, and economic sciences carrying out energy research will be accommodated in the two I²CNER buildings in the coming years.

President Kubo's Vision Regarding Tenured Faculty and PIs

President Kubo envisions that by 2020, I²CNER will employ 20-25 PIs, including 10 tenured PIs organically in the Institute (3 to 4 of which will be non-Japanese). Following this vision, Kyushu University has allotted a total of more than 10 tenured faculty positions (Professor and Associate Professor level) to I²CNER. With regard to the 10-15 PI positions which are not "tenured and organic in I²CNER," they will be filled through either: i) the Intra-University Transfer System (i.e., faculty transfer from other units of KU), ii) cross-appointments between I²CNER and other units of KU (e.g. economics, sciences, mathematics, life sciences, etc.), or iii) cross-appointments between I²CNER and its international partner institutes and industry.

Academic units of KU can obtain points for faculty hires through an annual internal competition under the framework of the University Reform Revitalization Program, and I²CNER has been successful at winning and filling positions. As of April 1, 2018, I²CNER has filled a total of 4 Associate Professor and 4 Professor positions, with 2.75 points (approximately 3 positions) left to fill in FY2018. In addition, two tenure-track Assistant Professors were hired in the area of applied math for energy, bringing the total of tenured faculty to 10, with up to 3 more positions to be filled. The KU administration has stipulated that at least 2 positions must be occupied by foreign PIs (1 was filled in FY2015).

Industrial Research Unit and Industrial Advisory Board

On April 1, 2017, I²CNER established the "Industrial Advisory Board (IAB)," whose members are prominent executives from industry, government agencies, and national laboratories that advise I²CNER on opportunities for interactions with industry and technology transfer. The first IAB meeting was held on February 1, 2018 and attended by 9 out of 10 IAB members. The meeting provided invaluable inputs to I²CNER researchers in regards to research areas that industries would have interest for promoting the development of new technologies.

Additional resources are being secured through projects sponsored by industrial partners within the newly established "Industrial Research Unit." This Unit was established in FY2017 with its purpose being to advance technology transfer with corporations and pursue stronger relationships with industry and government programs. This new "Unit" comprises of several industry-sponsored research projects, wherein a team of I²CNER researchers and embedded-industry-affiliates work on a particular research area of mutual interest. Through this new unit, I²CNER will expand its outreach to promote the deployment of its technology to industries that will fund I²CNER projects in the future. The first such project is "Mobile Energy Storage for Low-Carbon Society" sponsored by Mazda Motor Corporation for 71 million JPY with a duration of three years beginning in FY2017. Additionally, the IHI Corporation has sponsored 5 million JPY on the "Study of High-temperature Co-electrolysis of CO_2 and H₂O."

Strategy and action plan for acquiring external funding

The Director's vision is that I²CNER can remain strong and agile by developing cores of embedded centers funded by external agencies (both industrial and governmental) and securing industrial projects that will last beyond the WPI funding period.

Drawing from the experience gained from the establishment of the NEXT-RP Center, I²CNER will intensify its efforts to establish similar internal research centers in response to national initiatives by government agencies such as NEDO, METI, Riken, JSPS, and JST. Riken, for example, currently does not have a location in the Western part of Japan, making Kyushu University a strong option for a potential future center. With regard to establishing internal research centers, I²CNER will i) be active on implanting future research themes in government agencies for new national agency research initiatives, ii) rely on the input from the Industrial Advisory Board to create new ideas that will attract funding from industry, government, and national and international foundations (e.g. Gates Foundation, Simons Foundation), and iii) utilize the new Industrial Research Division to attract industrial projects for collaborative efforts in the form of open innovation.

An example of attracting industrial funding is the workshops that were organized jointly with Toshiba Corporation to explore the possibilities of joint research on topics of mutual interest. The first workshop targeting chemistry applications was held at I²CNER on October 31, 2017 and the second workshop targeting materials for adverse environments was held at Toshiba on March 6, 2018. As a result of these workshops, there is an ongoing discussing between I²CNER and Toshiba on the funding of these initiatives.

Ongoing Funded Research Programs

I²CNER researchers leverage the established infrastructure, research culture, and international visibility of the Institute to aggressively pursue funding. By way of example, some major I²CNER research programs are: i) The JST-CREST Grant awarded to Profs. M. Yamauchi and N. Nakashima at a level of ~ 180 million JPY from FY15 to FY19; ii) the Research Center for Next Generation Refrigerant Properties (NEXT-RP) awarded to Profs. Y. Takata and S. Koyama at a level of 58 million JPY/year from FY16 to FY17; iii) the joint PIRE program awarded by the U.S. NSF and JSPS to researchers at Illinois and Kyushu at a level of ~ 495 million JPY from FY15 to FY19 (4.5 million USD at an exchange rate of 110 JPY); iv) the Kakenhi Grant-in-Aid awarded to Profs. Ishihara and Sakai at a level of ~385 million JPY from FY15 to FY19; v) the JSPS Core-to-Core Grant for an advanced research network to Prof. Matsumoto and collaborators at a level of 90 million JPY from FY17 to FY21; vi) The Center for Small Molecule Energy (CSME) awarded to Prof. Ogo at a level of 99 million JPY from FY14 to FY18; vii) the "International Research Center of Giant Straining for Advanced Materials (IRC-GSAM) awarded to Prof. Horita from FY15 to FY20 with funding so far at the level of ~ 3 million JPY; and viii) the JSPS Grant-in-Aid for Specially Promoted Research awarded to Prof. Ogo from FY2014 to FY2018 at a level of ~440 million JPY.

Director's Authority

Kyushu University regulations and rules give the authority for the I²CNER operations to the Institute Director, and the appointment/dismissal of the Institute Director is authorized by the President of the host institution. The Director is assisted by two Associate Directors. The Institute Director, Prof. Sofronis, has direct access to the Office of the President and the Office of the Executive Vice President (EVP) in charge of Research and Industry Collaboration. Regular meetings are held between the Director and the EVP in charge of Research and Industry Collaboration. Advice and counsel from the President is given as needed. The decision-making system of the Institute has been set so that the Director is solely responsible for making decisions regarding the planning and conduct of the research activities, the formation and composition of the research program areas or divisions, potential division reorganization and redirection of research efforts in response to the feedback from the annual site visit reviews of the Institute, the recruitment of postdocs and faculty, the establishment of international collaborations and interactions with top research institutions, the administration of the peer evaluation process of the Institute's research output, and budget implementation, the idea being that the Director's authority will affect future organizational reforms, developments, etc.

Administrative Director

Since April 1, 2015, Mr. Shunichi Masuda has been the I²CNER Administrative Director, which includes responsibility for the oversight of the Administrative Office and other duties as assigned by the Director, e.g. interactions with other KU units, government agencies, and corporations. Mr. Masuda has extensive experience working in industry, both in the U.S. and Japan.

6. Others

* In addition to the above 1-5 evaluation items, only if there is anything else that deserves mention regarding the center project's progress, please note it.

CICOM (Carle Illinois College of Medicine)

Another example of KU-Illinois synergy outside of I²CNER is the initiative for the collaboration between the Carle Illinois College of Medicine and KU's School of Medicine. CICOM was established in May of 2017 and is the first such college of medicine in the U.S. in which medicine and engineering are fused together. The discussions for establishing a partnership between the two colleges have been carried out through the following mutual visits: May 1, 2017: EVP Wakayama and his delegation at Illinois; August 22, 2017: Prof. King Li, Dean of CICOM, and his delegation at KU; February 5, 2018: EVP Wakayama and Prof. Yusaku Nakabeppu, Director of the Medical Institute of Bioregulation at Illinois. Finalized discussions toward establishing this collaboration are projected to be complete in FY2018.

NEXT-RP (Research Center for Next Generation Refrigerant Properties)

NEXT-RP was awarded to Profs. Y. Takata and S. Koyama at a level of 58 million JPY/year from FY2016 to FY2017 by the New Energy and Industrial Technology Development Organization (NEDO). This is a unique center throughout the world because it is a focused effort on behalf of NEDO to help coordinate the efforts of the international community toward the development of next generation refrigerants. More specifically, the objectives of the Center are: accurate evaluation of thermophysical properties and fundamental performance of heat exchange and air conditioning and refrigeration (ACR) cycles for zero-ODP (ozone depletion potential) and low-GWP (global warming potential) refrigerants; organize the R&D national research group led by Kyushu University; development of base knowledge and technology for thermophysical properties, performance of heat exchange, and the fundamentals of the ACR cycle; technology transfer and assistance to ACR industrial sectors; and contributions to Japanese ACR industries to make them more competitive in the global market. Other I²CNER researchers involved in the project are PI B.B. Saha and WPI Professor M. Kohno. The amount to be funded (by NEDO) to NEXT-RP in FY2018 will be at the level of 10 million JPY.

7. Center's response to the follow up results in last year

^c Transcribe the item from the "Advice/ recommendations" section in the site visit report and "Actions required and

- * For the center launched in FY 2017, please describe the status of response to the pointed items in "Major points that need to be improved" of "The screening result for WPI centers launched in FY 2017."
 * However, if you have already provided this information, please indicate where in the report.

"Advice/recommendations" from the Site Visit Report: The I²CNER Scenarios and Roadmap documents are vital to defining the future vision of I²CNER. Although I²CNER tends to emphasize recent achievements in specific fields of scientific interest, it is more important to stress the importance or impact of this research on the development of future energy systems. These analyses should be based on the relationship of the research to various CO_2 reduction scenarios, the background, status and level of the work in comparison to that of other institutes, references to competing technologies, and commercialization potential. At present, there are many ongoing energy-related projects in Japan supported by governmental agencies such as NEDO, JST and government ministries. It is crucial to facilitate discussions between the Institute and the various ministries or funding agencies associated with energy research.

Building on the scenarios and the division roadmaps, which provide a clear comparison of the current I²CNER research accomplishments to technology targets and benchmarks worldwide, I²CNER's research portfolio is continuously updated with regard to the impact of its relevant technologies on CO₂ emission reductions. In particular, the continuously updated I²CNER CO₂ Report entitled "Toward

2050: Contributing to a Low Carbon Energy Society" outlines the direct CO_2 reductions enabled by I^2CNER research thrusts and the industry contributions which are underpinned by these innovations. In addition, the energy transitions research within the Energy Analysis Division specifically addresses the technological advances in renewable and low-carbon initiatives to the development of energy system scenarios for Japan. The I^2CNER CO_2 Report specifically estimates our ongoing efforts in comparison to competing (or complementary) industries, and also factors in the technological areas in which we do not compete (nuclear energy, for example).

In general, I²CNER is an enabler for *advanced materials, energy technologies*, and the *future of* Japan's energy. In the area of advanced materials, we are developing steels for adverse chemomechanical environments, efficient catalysts, and promising semiconductors. In the area of energy technologies, we are developing durable hybrid Perovskite solar cells, low and high temperature fuel cells, fuel storage systems, and positively impacting the implementation of the hydrogen economy in Japan. Lastly, with regard to the future of Japan's energy, our research informs policy and planning as well as promoting a cleaner environment through capture, utilization, or sequestration of CO_2 . By way of example, our productive collaboration with Toyota Motor Corporation on the distribution of hydrogen fueling stations throughout Japan and the submission of the relevant report to the Ministry of Economy Trade and Industry demonstrates the commitment of I²CNER to execute its mission through an active partnership with industry and government agencies. The multi-million yen awards from both national and international agencies such JST, METI, NEDO, and U.S. NSF also show that I²CNER makes and will continue to make a serious effort to keep its research portfolio in line with and simultaneously competitive in the international energy landscape. Most importantly, the vision of Kyushu University is for I²CNER to become a resource that will inform these agencies on the current state-of-the-art in energy research. Lastly, the establishment of the Industrial Research Unit within I²CNER is helping to advance open innovation with industries such as Mazda Corporation and IHI Corporation while the Industrial Advisory Board is informing and facilitating the returning of our research results to society as technological innovations.

"Actions required and recommendations" from the Follow-up Report: I²CNER has certainly achieved "World Premier Status", especially in the areas of institutional reform, internationalization, relationship with industry, and transfer of research results to society. Maintaining the level of research in these areas in the future will be a considerable challenge. Accordingly, it will be essential to continue providing the center support from the entirety of Kyushu University, especially from the president. Regarding I²CNER's research, it would be better to develop a clear vision concerning the development of truly innovative and path-breaking energy devices and processes with demonstrative impacts on the primary goal of achieving a carbon neutral society.

Effective April 1, 2013, with the revision of the "Regulations of Kyushu University," I²CNER's position is clearly defined as a permanent Research Institute of Kyushu University without regard to the length of the WPI Program. I²CNER enjoys the full support of President Kubo, and as described in Section 5 under "President Kubo's Vision Regarding Tenured Faculty and PIs", I²CNER's future regarding the required tenured faculty and PI numbers for a smooth transition into the post WPI-Program period is secure. As of October 1, 2016, and drawing from its international research experiences and approaches, I²CNER plays a central role in the Kyushu University Platform for Inter/Transdisciplinary Energy Research (Q-PIT) by helping to promote and advance a wide range of collaborations on energy research with other KU units. This allows the Institute to capitalize on opportunities to broaden and enrich its energy portfolio by identifying the linkages between technology and society for future research and technology goals while also helping Q-PIT advance its mission to catalyze interactions between diverse and disparate disciplines and units. Regarding the laboratory infrastructure, through a change in KU's internal policy, KU will accommodate I²CNER in "I²CNER Building 1" with reduced rental fees, freeing ~100 M JPY for new investments in research and technology initiatives. After the WPI Program, KU will provide space in parts of I²CNER Buildings 1 and 2, which are located at the heart of the Center Zone at the Ito Campus.

In terms of a systematic approach toward the development of a future vision, with particular focus on technology, economy, environment and a carbon-neutral society, I^2 CNER has also developed a second living document entitled "Powering the Future: Economic, Environmental, and Social Impacts of I^2 CNER". This document addresses many of the key "World Premier Institute" criteria, demonstrating not only the energy and technology thrusts under investigation but also the active transfer of technology to industry (34 events as of Aug. 2017, 48 in total since inception), the flow-

on impacts for employment, brain circulation and international partnerships, and our contribution to offsetting CO₂. This living document provides a strong evidence base for the future support of the institute, demonstrating I²CNER's positive impact on science and technology, the economy, energy security, the environment, interaction with industry, and our influence on social and academic impacts including education and cultural exchange. All of these impacts are underpinned by our basic science, engineering, and energy analysis research achievements.

Appendix 1 FY2017 List of Center's Research Results and Main Awards

1. Refereed Papers

- List only the Center's papers published in 2017. (Note: The list should be for the calendar year, not the fiscal year.)

- Divide the papers into two categories, A and B.
- WPI papers

B.

List papers whose author(s) can be identified as affiliated with the WPI program (e.g., that state the name of his/her WPI center). (Not including papers in which the names of persons affiliated with the WPI program are contained only in acknowledgements.) WPI-related papers

List papers related to the WPI program but whose authors are not noted in the institutional affiliations as WPI affiliated. (Including papers whose acknowledgements contain the names of researchers affiliated with the WPI program.)

Note: On 14 December 2011, the Basic Research Promotion Division in MEXT's Research Promotion Bureau circulated an instruction requiring paper authors to include the name or abbreviation of their WPI center among their institutional affiliations. As some WPI-affiliated authors of papers published up to 2011 may not be aware of this requirement, their papers are treated as "WPI-related papers." From 2012, however, the authors' affiliations must be clearly noted and only category A papers will be basically listed.

(2) Method of listing paper

- List only referred papers. Divide them into categories (e.g., original articles, reviews, proceedings).
 For each, write the author name(s); year of publication; journal name, volume, page(s), and article title. Any listing order may be used as long as format is the same. (The names of the center researchers do not need to be underlined.)
- If a paper has many authors (say, more than 20), all of their names do not need to be listed.
 If the papers are written in languages other than English, divide them into paper's categories when listing them.
- Assign a serial number to each paper to be used to identify it throughout the system.
- Order of Listing
- WPI papers Α.
 - 1. Original articles
 - 2. Review articles
 - 3. Proceedings
 - 4. Other English articles 5. Articles written in other than English
- WPI-related papers Β. 1. Original articles
 - 2. Review articles
 - 3. Proceedings
 - 4. Other English articles
 - 5. Articles written in other than English
- (3) Submission of electronic data
 - In addition to the above, provide a .csv file output from the Web of Science (e.g.) or other database giving the paper's raw data including Document ID. (Note: the Document ID is assigned by paper database.)
 - These files do not need to be divided into paper categories.

(4) Use in assessments

- The lists of papers will be used in assessing the state of WPI project's progress in FY 2017.
- They will be used as reference in analyzing the trends and whole states of research in the said WPI center, not to evaluate individual researcher performance
- The special characteristics of each research domain will be considered when conducting assessments.

(5) Additional documents

- After all documents, including these paper listings, showing the state of research progress have been submitted, additional documents may be requested.

Note: This list includes the refereed papers published in the calendar year 2017

No.	Description
	A.1. Original Articles
1	Chouwatat, P., Higaki, Y., Hirai, T. and Takahara, A. (2017), Aqueous Lubrication of Poly(ether ether ketone) Surface via Surface-initiated Polymerization of Electrolyte Monomers, Polymer, 116 (5), 549-555.
2	Watanabe, M., Honda, Y., Hagiwara, H. and Ishihara, T. (2017), [FeFe]-Hydrogenase and its organic molecule mimics-Artificial and bioengineering application for hydrogenproduction, JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS, 33, 1-26.
3	Akhtar, M.N., Mateen, M., Sadakiyo, M., Warsi, M.F., AlDamen, M.A. and Song, Y. (2017), 1D cerium(III) coordination polymer with pivalate bridges: Synthesis, structure and magnetic properties, Journal of Molecular Structure, 1141 (1), 170-175.

4	Tsuji, T., Minato, S., Kamei, R., Tsuru, T. and Kimura, G. (2017), 3D geometry of a plate boundary fault related to the 2016 Off-Mie earthquake in the Nankai subduction zone, Japan, Earth and Planetary Science Letters, 478, 234-244.
5	Breitwieser, M., Bayer, T., Büchler, A., Zengerle, R., Lyth, S.M. and Thiele, S. (2017), A fully spray-coated fuel cell membrane electrode assembly using Aquivion ionomer with a graphene oxide/cerium oxide interlayer, Journal of Power Sources, 351, 145-150.
6	Kikkawa, M., Yatabe, T., Matsumoto, T., Yoon, KS., Suzuki, K., Enomoto, T., Kaneko, K. and Ogo, S. (2017), A Fusion of Biomimetic Fuel and Solar Cells Based on Hydrogenase, Photosystem II, and Cytochrome c Oxidase, CHEMCATCHEM, 9 (21), 4024-4028.
7	Fujigaya, T., Shi, Y.L., Yang, J., Li. H., Ito, K. and Nakashima, N. (2017), A highly efficient and durable carbon nanotube-based anode electrocatalyst for water electrolyzers, Journal of Materials Chemistry A, 5 (21), 10584-10590.
8	Martin, M.L., Dadfarnia, M., Orwig, S., Moore, D. and Sofronis, P. (2017), A microstructure-based mechanism of cracking in high temperature hydrogen attack, Acta Materialia, 140, 300-304.
9	Yatabe, T., Tokunaga, T., Matsumoto, T., Kikkawa, M., Yoon, KS. and Ogo, S. (2017), A MnI model for the photoinhibited species of oxygen-evolving complex, Chemistry Letters, 47 (1), 34-36.
10	Jinnai, K., Kabe, R. and Adachi, C. (2017), A near-infrared organic light-emitting diode based on an Yb(III) complex synthesized by vacuum co-deposition, Chemical Communications, 53 (39), 5457-5460.
11	Chen XK., Tsuchiya Y., Ishikawa Y., Zhong C., Adachi C. and Brédas JL. (2017), A New Design Strategy for Efficient Thermally Activated Delayed Fluorescence Organic Emitters: From Twisted to Planar Structures, Advanced Materials, 29 (46), 1702767.
12	Koshiba, K., Yamauchi, K. and Sakai, K. (2017), A Nickel Dithiolate Water Reduction Catalyst Providing Ligand-Based Proton-Coupled Electron-Transfer Pathways, Angewandte Chemie - International Edition, 56 (15), 4247-4251.
13	Morita, K., Takijiri, K., Sakai, K. and Ozawa, H. (2017), A platinum porphyrin modified TiO ₂ electrode for photoelectrochemical hydrogen production from neutral water driven by the conduction band edge potential of TiO2, Dalton Transactions, 46 (44), 15181-15185.
14	Yamamoto, K., Hirai, T., Oda, Y., Kawaguchi, D., Matsuno, H. and Tanaka, K. (2017), A Polymer Interfacial Modifier Synthesized by Living Anionic Polymerization: Incorporation of Inorganic Blocks to Chain Ends, MacromolecularChemistry and Physics, 218 (12), 1600473.
15	Taniguchi, I., Wada, N., Kinugasa, K. and Higa, M. (2017), A strategy to enhance CO ₂ permeability of well-defined hyper-branched polymers with dense polyoxyethylene comb graft, Journal of Membrane Science, 535, 239-247.
16	Christiani, L., Sasaki, K. and Nishihara, M. (2018), Aliphatic SPI charge-transfer complex hybrid films for high temperature polymer electrolyte membrane fuel cells, Journal of Applied Polymer Science, 135 (14), 46087.
17	Akhtar, M.N., AlDamen, M.A., Chen, YC., Sadakiyo, M., Khan, J. and Tong, ML. (2017), Alkoxo- and carboxylato-bridged hexanuclear copper(II) complex: Synthesis, structure and magnetic properties, Inorganic Chemistry Communications, 83, 49-51.
18	Futamura, S., Tachikawa, Y., Matsuda, J., Lyth S. M., Shiratori, Y., Taniguchi, S. and Sasaki, K. (2017), Alternative Ni-Impregnated Mixed Ionic-Electronic Conducting Anode for SOFC Operation at High Fuel Utilization, Journal of The Electrochemical Society, 164 (10), F3055-F3063.
19	Akhtar, M.N., Tahir, S., Sadakiyo, M., Warsi, M.F., AlDamen, M.A. and Song, Y. (2017), An azide-bridged copper(II) 1D-chain with ferromagnetic interactions: synthesis, structure and magnetic studies, Transition Metal Chemistry, 42 (7), 1-7.
20	Rahman, M.M., Kariya, K. and Miyara, A. (2017), An experimental study and development of new correlation for condensation heat transfer coefficient of refrigerant inside a multiport minichannel with and without fins, International Journal of Heat and Mass Transfer, 116, 50-60.

21	Islam, M.A., Srinivasan, K., Thu, K. and Saha, B.B. (2017), Assessment of total equivalent warming impact (TEWI) of supermarket refrigeration systems, International Journal of Hydrogen Energy, 42 (43), 26973-26983.
22	Akhtar, M.N., Shahid, M., Sadakiyo, M., Ikram, M., Rehman, S. and Ahmed, I. (2017), Biochemical Evaluation of Copper Compounds Derived from O- and N-/O- Donor Ligands, Pharmaceutical Chemistry Journal, 51 (4), 272-276.
23	Pambudi, N. A., Itaoka, K., Chapman, A. and Dinh, N. (2017), Biomass energy in Japan: Current status and future potential, International Journal of Smart Grid and Clean Energy, 6 (2), 119-126.
24	Chavan, S., Carpenter, J., Nallapaneni, M., Chen, J.Y. and Miljkovic, N. (2017), Bulk water freezing dynamics on superhydrophobic surfaces, Applied Physics Letters, 110 (4), 041604.
25	Harrington, GF., Skinner, SJ. and Killner, JA. (2018), Can solute segregation in ceramic materials be reduced by lattice strain?, JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 101 (3), 1310-1322.
26	Terayama, Y., Haji, T., Furukawa, S., Nomura, M., Nishihara, M., Lyth, S.M., Sone, Y. and Matsumoto, H. (2018), Carbon black / PTFE composite hydrophobic gas diffusion layers for a water-absorbing porous electrolyte electrolysis cell, International Journal of Hydrogen Energy, 43 (4), 2018-2025.
27	Ma, S., Liu, J., Sasaski, K., Lyth, S.M. and Kenis, P. (2017), Carbon foam decorated with silver nanoparticles for electrochemical CO ₂ conversion, Energy Technology, 5 (6), 861-863.
28	Qin, C., Matsushima, T., Sandanayaka, A. S. D., Tsuchiya, Y. and Adachi, C. (2017), Centrifugal-coated quasi-two-dimensional perovskite CsPb2Br5 films for efficient and stable light-emitting diodes, Journal of Physical Chemistry Letters, 8 (21), 5415-5421.
29	Chhun, C., Kioka, A., Jia, J. and Tsuji, T. (2018), Characterization of hydrate and gas reservoirs in plate convergent margin by applying rock physics to high-resolution seismic velocity model, Marine and Petroleum Geology, In Press.
30	Taniguchi, I., Wada, N., Kinugasa, K. and Higa, M. (2017), CO2 capture by polymeric membranes composed of hyper-branched polymers with dense poly(oxyethylene) comb and poly(amidoamine), Open Physics, 15 (1), 662-670.
31	Rahman, M.M., Kariya, K. and Miyara, A. (2017), Comparison and development of new correlation for adiabatic two-phase pressure drop of refrigerant flowing inside a multiport minichannel with and without fins, International Journal of Refrigeration, 82, 119-129.
32	Moller, KT., Sheppard, D., Ravnsbaek, DB., Buckley, CE., Akiba, E. and Li, HW. Jensen, TR (2017), Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage, ENERGIES, 10 (10), 1645.
33	Takakuwa, O., Yamabe, J., Matsunaga, H., Furuya, Y. and Matsuoka, S. (2017), Comprehensive Understanding of Ductility Loss Mechanisms in Various Steels with External and Internal Hydrogen, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 48 (11), 5717-5732.
34	Kearney, K., Rockett, A. and Ertekin, E. (2017), Computational insights into charge transfer across functionalized semiconductor surfaces, Science and Technology of Advanced Materials, 18 (1), 681-692.
35	Weisensee, PB., Wang, YB., Qian, HL., Schultz, D., King, WP. and Miljkovic, N. (2017), Condensate droplet size distribution on lubricant-infused surfaces, INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 109, 187-199.
36	Mito, M., Shibayama, K., Deguchi, H., Tsuruta, K., Tajiri, T., Edalati, K. and Horita, Z. (2017), Contactless measurement of electrical conductivity for bulk nanostructured silver prepared by high-pressure torsion: A study of the dissipation process of giant strain, Journal of Applied Physics, 122 (12), 125105.
37	Kobayashi, T., Niwa, A., Takaki, K., Haseyama, S., Nagase, T., Goushi, K., Adachi, C. and Naito, H. (2017), Contributions of a Higher Triplet Excited State to the Emission Properties of a Thermally Activated Delayed-Fluorescence Emitter, Physical Review Applied, 7 (3), 034002.
38	Hirai, T., Kobayashi, M. and Takahara, A. (2017), Control of the primary and secondary structure of polymer brushes by surface-initiated living/controlled polymerization, POLYMER CHEMISTRY, 8, 5456-5468.

39	Okumura, M., Noda, Z., Matsuda, J., Tachikawa, Y., Nishihara, M., Lyth, S.M., Hayashi, A. and Sasaki, K. (2017), Correlating Cathode Microstructure with PEFC Performance Using FIB-SEM and TEM, Journal of The Electrochemical Society, 164 (9), F928-F934.
40	Kevin, K., Monty, J.P., Bai, H.L., Pathikonda, G., Nugroho, B., Barros, J.M., Christensen, K.T. and Hutchins, N. (2017), Cross-stream stereoscopic particle image velocimetry of a modified turbulent boundary layer over directional surface pattern, Journal of Fluid Mechanics, 813, 412-435.
41	Chapman, A. and Itaoka, K. (2018), Curiosity, economic and environmental reasoning: Public perceptions of liberalization and renewable energy transition in Japan, Energy Research and Social Science, 37 (1), 102-110.
42	Kong, LY., Song, Y., Kim, JD., Yu, L., Wasserman, D., Chim, WK., Chiam, SY. and Li, XL. (2017), Damage-Free Smooth-Sidewall InGaAs Nanopillar Array by Metal-Assisted Chemical Etching, ACS NANO, 11 (10), 10193-10205.
43	Yang, J., Fujigaya, T. and Nakashima, N. (2017), Decorating unoxidized-carbon nanotubes with homogeneous Ni-Co spinel nanocrystals show superior performance for oxygen evolution/reduction reactions, Scientific Reports, 7, 45384
44	Ye, H., Cui, L., Matsushima, T., Qin, C. and Adachi, C. (2018), Deep-Red Amplified Spontaneous Emission from cis-Configured Squaraine, ACS Applied Materials & Interfaces, 10 (1), 27-31.
45	Kim, J.J., Bishop, S.R., Chen, D. and Tuller, H.L. (2017), Defect Chemistry of Pr Doped Ceria Thin Films Investigated by in Situ Optical and Impedance Measurements, Chemistry of Materials, 29 (5), 1999-2007.
46	Nguyen, H.K., Inutsuka, M., Kawaguchi, D. and Tanaka, K. (2017), Depth-resolved local conformation and thermal relaxation of polystyrene near substrate interface, Journal of Chemical Physics, 146, 203303.
47	Taneda, H., Shundo, A., Matsuno, H. and Tanaka, K. (2017), Design of a Well-Defined Polyrotaxane Structure on a Glassy Polymer Surface, Langmuir, 34 (2), 709-714.
48	Yamasaki, S., Morita, H., Kuwamura, G., Hasegawa, D. and Kojio, K. (2017), Development of novel polyurethanes with high elasticity and durability based on a cycloaliphatic diisocyanate controlled the stereoisomer structure, Nihon Reoroji Gakkaishi, 45 (5), 205-207.
49	Feng, S., Kondo, S., Kaseyama, T., Nakazawa, T., Kikuchi, T., Selyanchyn, R., Fujikawa, S., Christiani, L., Sasaki, K. and Nishihara, M. (2018), Development of polymer-polymer type charge-transfer blend membranes for fuel cell application, Journal of Membrane Science, 548 (15), 223-231.
50	Komino, T., Oki, Y. and Adachi, C. (2017), Dipole orientation analysis without optical simulation: Application to thermally activated delayed fluorescence emitters doped in host matrix, Scientific Reports, 7 (1), 8405.
51	Higaki, Y., Kobayashi, M., Hirai, T. and Takahara, A. (2018), Direct Polymer Brush Grafting to Polymer Fibers and Films by Surface-Initiated Polymerization, Polymer Journal, 50, 101-108.
52	Navickas, E., Chen, Y., Lu, QY., Wallisch, W., Huber, TM., Bernardi, J., Stoger-Pollach, M., Friedbacher, G., Hutter, H., Yildiz, B. and Fleig, J. (2017), Dislocations Accelerate Oxygen Ion Diffusion in La ₀₈ Sr _{0.2} MnO ₃ Epitaxial Thin Films, ACS NANO, 11 (11), 11475-11487.
53	Geng, Y., D'Aleo, A., Inada, K., Cui, LS., Kim, J.U., Nakanotani, H. and Adachi, C. (2017), Donor– σ –Acceptor Motifs: Thermally Activated Delayed Fluorescence Emitters with Dual Upconversion, Angewandte Chemie - International Edition, 56 (52), 16536-16540.
54	Téllez Lozano, H., Druce, J., Cooper, S.J., and Kilner, J.A. (2017), Double perovskite cathodes for proton-conducting ceramic fuel cells: are they triple mixed ionic electronic conductors?, Science and Technology of Advanced Materials, 18 (1), 977-986.
55	Weisensee, PB., Ma, JC., Shin, YH., Tian, JJ., Chang, YJ., King, WP. and Miljkovic, N. (2017), Droplet impact on vibrating superhydrophobic surfaces, PHYSICAL REVIEW FLUIDS, 2 (10), 10361.
56	Mufundirwa, A., Harrington, G.F., Smid, B., Cunning, B.V., Sasaki, K. and Lyth, S.M. (2018), Durability of template-free Fe-N-C foams for electrochemical oxygen reduction in alkaline solution, Journal of Power Sources, 375, 244-254.

57	Watanabe, M. (2017), Dye-sensitized photocatalyst for effective water splitting catalyst, SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 18 (1), 705-723.
58	Shen, B., Yamada, M., Hidaka, S., Liu, J., Shiomi, J., Amberg, G., Do-Quang, M., Kohno, M., Takahashi, K. and Takata, Y. (2017), Early Onset of Nucleate Boiling on Gas-covered Biphilic Surfaces, Scientific Reports, 7 (1), 2036.
59	Murthy, S.S., Saha, B.B. and Freni, A. (2017), Editorial Special issue: Selected Papers from the International Symposium on Innovative Materials for Processes in Energy Systems 2016 (IMPRES2016), Applied Thermal Engineering, 127, 1062.
60	Taniguchi, I., Kinugasa, K., Toyoda, M. and Minezaki, K. (2017), Effect of amine structure on CO ₂ capture by polymeric membranes, SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 18 (1), 950-958.
61	Das, N., Takata, Y., Kohno, M. and Harish, S. (2017), Effect of carbon nano inclusion dimensionality on the melting of phase change nanocomposites in vertical shell-tube thermal energy storage unit, International Journal of Heat and Mass Transfer, 113, 423-431.
62	Nozaki, S., Hirai, T., Higaki, Y., Yoshinaga, K., Kojio, K. and Takahara, A. (2017), Effect of chain architecture of polyol with secondary hydroxyl group on aggregation structure and mechanical properties of polyurethane elastomer, Polymer, 116, 423-428.
63	Higaki, Y., Inutsuka, Y., Sakamaki, T., Terayama, Y., Takenaka, A., Higaki, K., Yamada, N.L., Moriwaki, T., Ikemoto, Y. and Takahara, A. (2017), Effect of Charged Group Spacer Length on Hydration State in Zwitterionic Poly(sulfobetaine) Brushes, Langmuir, 33 (34), 8404-8412.
64	Takazaki, D., Kubota, M., Komoda, R., Oku, Y., Makino, T. and Sugino, M (2017), Effect of contact pressure on fretting fatigue failure of oil-well pipe material, International Journal of Fatigue, 101 (Part1), 67-74.
65	Edalati, K., Novelli, M., Itano, S., Li, HW., Akiba, E., Horita, Z. and Grosdidier, T. (2018), Effect of gradient-structure versus uniform nanostructure on hydrogen storage of Ti-V-Cr alloys: Investigation using ultrasonic SMAT and HPT processes, Journal of Alloys and Compounds, 737, 337-346.
66	Bryła, K., Morgiel, J., Faryna, M., Edalati, K. and Horita, Z. (2018), Effect of high-pressure torsion on grain refinement, strength enhancement and uniform ductility of EZ magnesium alloy, Materials Letters, 212, 323-326.
67	Nojima, S., Higaki, Y., Kaetsu, K., Ishige, R., Ohta, N., Masunaga, H., Hirai, T., Kojio, K. and Takahara, A. (2017), Effect of Molecular Mobility of Pre-Ordered Phase on Crystallization in Microphase-separated Lamellar Morphology of Strongly Segregated Crystalline-Crystalline Diblock Copolymers, Polymer, 116, 403-411.
68	Zhang, Y., Hirai, T., Higaki, Y. and Takahara, A. (2018), Effect of polycaprolactone crystalline block on surface reorganization of a phosphorylcholine-based amphiphilic block copolymer surface modifier, Chemistry Letters, 47, 247-250.
69	Parsa, M., Harmand, S., Sefiane, K., Bigerelle, M. and Deltombe, R. (2017), Effect of Substrate Temperature on Pattern Formation of Bidispersed Particles from Volatile Drops, JOURNAL OF PHYSICAL CHEMISTRY B, 121 (48), 11002-11017.
70	Kearney, K., Iyer, A., Rockett, A., Staykov, A. and Ertekin, E. (2017), Effect of Surface Coverage and Composition on the Stability and Interfacial Dipole of Functionalized Silicon, Journal of Physical Chemistry C, 121 (21), 11312-11318.
71	Edalati, K., Hashiguchi, Y., Pereira, P.H.R., Horita, Z. and Langdon, T.G. (2018), Effect of temperature rise on microstructural evolution during high-pressure torsion, Materials Science and Engineering A, 714, 167-171.
72	Jiang, FL., Hirata, K., Masumura, T., Tsuchiyama, T. and Takaki, S. (2018), Effect of the Surface Layer Strained by Mechanical Grinding on X-ray Diffraction Analysis, ISIJ INTERNATIONAL, 58 (2), 376-378.
73	Mine, Y., Horita, N., Horita, Z. and Takashima, K. (2017), Effect of ultrafine grain refinement on hydrogen embrittlement of metastable austenitic stainless steel, International Journal of Hydrogen Energy, 42 (22), 15415-15425.
74	Bakir, M., Henderson, CN., Meyer, JL., Oh, J., Miljkovic, N., Kumosa, M., Economy, J. and Jasiuk, I. (2018), Effects of environmental aging on physical properties of aromatic thermosetting copolyester matrix neat and nanocomposite foams, POLYMER DEGRADATION AND STABILITY, 147, 49-56.

75	Kurahashi, Y., Tanaka, H., Terayama, M. and Sugimura, J. (2017), Effects of environmental gas and trace water on the friction of DLC sliding with metals, Micromachines, 8 (7), 217.
76	Lawrence, S.K., Yagodzinskyy, Y., Hänninen, H., Korhonen, E., Tuomisto, F., Harris, Z.D. and Somerday, B.P. (2017), Effects of grain size and deformation temperature on hydrogen-enhanced vacancy formation in Ni alloys, Acta Materialia, 128, 218-226.
77	He, H., Furusato, K., Yamada, M., Shen, B., Hidaka, S., Kohno, M., Takahashi, K. and Takata, Y. (2017), Efficiency enhancement of a loop thermosyphon on a mixed-wettability evaporator surface, Applied Thermal Engineering, 123, 1245-1254.
78	Jia, J., Liang, Y., Tsuji, T., Murata, S. and Matsuoka, T. (2017), Elasticity and Stability of Clathrate Hydrate: Role of Guest Molecule Motions, Scientific Reports, 7, 1290.
79	Higaki, Y., Kiyoshima, Y., Suzuki, S., Kabayama, H., Oha, N., Seo, Y. and Takahara, A. (2017), Elastomers Built up through π-π Stacking Association of Polycyclic Planar Aromatic Diimides, RSC Advanced, 7 (73), 46195-46200.
80	El-Nahas, A.M., Staykov, A. and Yoshizawa, K. (2017), Electrical Conductance and Diode-Like Behavior of Substituted Azulene, Journal of Physical Chemistry C, 121 (5), 2504-2511.
81	Haraguchi, R., Yoshimatsu, Y., Nagaoka, T., Arita, M., Edalati, K. and Horita, Z. (2017), Electrical resistivity mapping of titanium and zirconium discs processed by high-pressure torsion for homogeneity and phase transformation evaluation, Journal of Materials Science, 52 (11), 6778-6788.
82	Sadakiyo, M., Hata, S., Cui, X. and Yamauchi M. (2017), Electrochemical Production of Glycolic Acid from Oxalic Acid Using a Polymer Electrolyte Alcohol Electrosynthesis Cell Containing a Porous TiO ₂ Catalyst, Scientific Reports, 7, 17032.
83	Kim, C.S., Bishop, S.R., Perry, N.H. and Tuller, H.L. (2017), Electro-chemo-mechanical studies of perovskite-structured mixed ionic-electronic conducting SrSn1-xFexO3-x/2+δ part I: Defect chemistry, Journal of Electroceramics, 38 (1), 74-80.
84	Chapman, A. and Itaoka, K. (2018), Energy transition to a future low-carbon energy society in Japan's liberalizing electricity market: Precedents, policies and factors of successful transition, Renewable and Sustainable Energy Reviews, 81 (2), 2019-2027.
85	Zhang, P., Maeda, Y., Lv, F.Y., Takata, Y. and Orejon, D. (2017), Enhanced Coalescence-Induced Droplet-Jumping on Nanostructured Superhydrophobic Surfaces in the absence of Microstructures, ACS Applied Materials and Interfaces, 9 (40), 35391-35403.
86	Esaki, Y., Komino, T., Matsushima, T. and Adachi, C. (2017), Enhanced Electrical Properties and Air Stability of Amorphous Organic Thin Films by Engineering Film Density, Journal of Physical Chemistry Letters, 8 (23), 5891-5897.
87	Selvam, C., Mohan Lal, D. and Harish, S. (2017), Enhanced heat transfer performance of an automobile radiator with graphene based suspensions, Applied Thermal Engineering, 123, 50-60.
88	Das, N., Kohno, M., Takata, Y., Patil, D.V. and Harish, S. (2017), Enhanced melting behavior of carbon based phase change nanocomposites in horizontally oriented latent heat thermal energy storage system, Applied Thermal Engineering, 125, 880-890.
89	Ueda, T., Abe, H., Kamada, K., Bishop, S.R., Tuller, H.L., Hyodo, T. and Shimizu, Y. (2017), Enhanced sensing response of solid-electrolyte gas sensors to toluene: Role of composite Au/metal oxide sensing electrode, Sensors and Actuators, B: Chemical, 252, 268-276.
90	Yamada, M., Shen, B., Imamura, T., Hidaka, S., Kohno, M., Takahashi, K. and Takata, Y. (2017), Enhancement of boiling heat transfer under sub-atmospheric pressures using biphilic surfaces, International Journal of Heat and Mass Transfer, 115, 753-762.
91	Nagata, R., Kondou, C. and Koyama, S. (2017), Enhancement of R1234ze(Z) pool boiling heat transfer on horizontal titanium tubes for high-temperature heat pumps, Science and Technology for the Built Environment, 23 (6), 923-932.
92	Yamazoe, K., Higaki, Y., Inutsuka, Y., Miyawaki, J., Cui, YT., Takahara, A. and Harada, Y. (2017), Enhancement of the Hydrogen-Bonding Network of Water Confined in a Polyelectrolyte Brush, Langmuir, 33 (16), 3954-3959.

93	Jribi, S., Miyazaki, T., Saha, B.B., Pal, A., Younes, M.M., Koyama, S. and Maalej, A. (2017), Equilibrium and kinetics of CO ₂ adsorption onto activated carbon, International Journal of Heat and Mass Transfer, 108 (Part B), 1941-1946.
94	Jiang, F. and Tsuji, T. (2017), Estimation of three-phase relative permeability by simulating fluid dynamics directly on rock-microstructure images, Water Resources Research, 53 (1), 11-32.
95	Pal, A., Kil, HS., Mitra, S., Thu, K., Saha, B.B., Yoon, SH., Miyawaki, J., Miyazaki, T. and Koyama, S. (2017), Ethanol adsorption uptake and kinetics onto waste palm trunk and mangrove based activated carbons, Applied Thermal Science, 122, 389-397.
96	Shimasaki, T., Iwasawa, R., Watanabe, M., Teramoto, N. and Shibata, M. (2017), Ethynylene-Bridged Conjugate Carbazole Trimers: Synthesis and their Structural, Photophysical, and Electrochemical Properties, Asian Journal of Organic Chemistry, 6 (7), 841-851.
97	Sakai, T., Hyodo, J., Ogushi, M., Inoishi, A., Ida, S. and Ishihara, T. (2017), Evaluation of isotope diffusion coefficient and surface exchange coefficient of ScSZ series oxide by oxygen isotope exchange method, Solid State Ionics, 301, 156-162.
98	Irshad, K., Habib, K., Kareem, M.W., Basrawi, F. and Saha, B.B. (2017), Evaluation of thermal comfort in a test room equipped with a photovoltaic assisted thermo-electric air duct cooling system, International Journal of Hydrogen Energy, 42 (43), 26956-26972.
99	Hosokai, T., Matsuzaki, H., Nakanotani, H., Tokumaru, K., Tsutsui, T., Furube, A., Nasu, K., Nomura, H., Yahiro, M. and Adachi, C. (2017), Evidence and mechanism of efficient thermally activated delayed fluorescence promoted by delocalized excited states, SCIENCE ADVANCES, 3 (5), e16032.
100	Matsumoto, Y., Shundo, A., Ohno, M., Tsuruzoe, N., Goto, M. and Tanaka, K. (2017), Evolution of Heterogeneity Accompanying Sol–gel Transitions in a Supramolecular Hydrogel, Soft Matter, 13 (32), 7433-7440.
101	Huber, T.M., Navickas, E., Sasaki, K., Yildiz, B., Tuller, H., Friedbacher, G., Hutter, H. and Fleig, J. (2017), Experimental design for voltage driven tracer incorporation and diffusion studies on oxide thin film electrodes, Journal of the Electrochemical Society, 164 (7), F809-F814.
102	Thu, K., Saththasivam, J., Saha, B.B., Chua, K.J., Srinivasa Murthy, S. and Ng, K.C. (2017), Experimental investigation of a mechanical vapour compression chiller at elevated chilled water temperatures, Applied Thermal Engineering, 123, 226-233.
103	Rahman, M.M., Kariya, K. and Miyara, A. (2017), Experimental investigation of condensation heat transfer and adiabatic pressure drop characteristics inside a microfin and smooth tube, International Journal of Air-Conditioning and Refrigeration, 25 (3), 1750027.
104	Wang, H., Hu, S., Takahashi, K., Zhang, X., Takamatsu, H. and Chen, J. (2017), Experimental study of thermal rectification in suspended monolayer graphene, Nature Communications, 8, 15843.
105	Narasaki, M., Wang, H., Nishiyama, T., Ikuta, T. and Takahashi, K. (2017), Experimental study on thermal conductivity of free-standing fluorinated single-layer graphene, Applied Physics Letters, 111 (9), 93103.
106	Oh, J., Dana, C.E., Hong, S., Román, J.K., Jo, K.D., Hong, J.W., Nguyen, J., Cropek, D.M. and Alleyne, M. and Miljkovic, N. (2017), Exploring the Role of Habitat on the Wettability of Cicada Wings, ACS Applied Materials and Interfaces, 9 (32), 27173-27184.
107	Kim, DH., Sandanayaka, A.S.D., Zhao, L., Pitrat, D., Mulatier, J.C., Matsushima, T., Andraud, C., Ribierre, J.C. and Adachi, C. (2017), Extremely low amplified spontaneous emission threshold and blue electroluminescence from a spin-coated octafluorene neat film, Applied Physics Letters, 110 (2), 023303.
108	Fujihara, T., Terakawa, S., Matsushima, T., Qin, C., Yahiro, M. and Adachi, C. (2017), Fabrication of high coverage MASnI3 perovskite films for stable, planar heterojunction solar cells, Journal of Materials Chemistry C, 5 (5), 1121-1127.

109	Zhang, F., Edalati, K., Arita, M. and Horita, Z. (2017), Fast hydrolysis and hydrogen generation on Al-Bi alloys and Al-Bi-C composites synthesized by high-pressure torsion, International Journal of Hydrogen Energy, 42 (49), 29121-29130.
110	Tanaka, Y., Chapman, A., Sakurai, S. and Tezuka, T. (2017), Feed-in Tariff Pricing and Social Burden in Japan: Evaluating International Learning through a Policy Transfer Approach, Social Sciences, 6 (1), Article 4.
111	Kim, N., Martin, P. P., Rockett, A. A. and Ertekin, E. (2017), First-principle study of the electronic structure and stability of reconstructed AgInSe ₂ (112) polar surfaces, IEEE Journal of Photovoltaics, 7 (6), 1781-1788.
112	Takahashi, H., Yashima, I., Amezawa, K., Eguchi, K., Matsumoto, H., Takamura, H. and Yamaguchi, S. (2017), First-Principles Calculations for the Energetics of the Hydration Reaction of Acceptor-Doped BaZrO ₃ , Chemistry of Materials, 29 (4), 1518-1526.
113	Yu, J., Wagner, L.K. and Ertekin, E. (2017), Fixed-node diffusion Monte Carlo description of nitrogen defects in zinc oxide, Physical Review B - Condensed Matter and Materials Physics, 95 (7), 075209.
114	Asikin, A.R.K., Priyono, A., Ariadji, T., Sapiie, B., Sule, M. R., Tsuji, T., Kadir, W. G. A., Matsuoka, T., and Rahardjo, S. (2017), Forward Modeling Time-Lapse Seismic based on Reservoir Simulation Result on The CCS Project at Gundih Field, Indonesia, Modern Applied Science, 12 (1), 39823.
115	Oku, Y., Sugino, M., Ando, Y., Makino, T., Komoda, R., Takazaki, D. and Kubota, M. (2017), Fretting fatigue on thread root of premium threaded connections, Tribology International, 108, 111-120.
116	Sakoda, N., Shiheng, J., Kohno, M., Koyama, S., Higashi, Y. and Takata, Y. (2017), Gaseous PVT Property Measurements of cis-1,3,3,3-Tetrafluoropropene, Journal of Chemical and Engineering Data, 62 (7), 2178-2182.
117	Pambudi, N.A. (2017), Geothermal power generation in Indonesia, a country within the ring of fire: Current status, future development and policy, Renewable and Sustainable Energy Reviews, 81 (2), 2893-2901.
118	Jhong, HR.M., Tornow, C.E., Kim, C., Verma, S., Oberst, J.L., Anderson, P.S., Gewirth, A.A., Fujigaya, T., Nakashima, N. and Kenis, P.J.A. (2017), Gold Nanoparticles on Polymer-Wrapped Carbon Nanotubes: An Efficient and Selective Catalyst for the Electroreduction of CO ₂ , ChemPhysChem, 18 (22), 3274-3279.
119	Ishitsuka, K., Matsuoka, T., Nishimura, T., Tsuji, T. and Elgharbawi, T. (2017), Ground uplift related to permeability enhancement following the 2011 Tohoku earthquake in the Kanto Plain, Japan 6. Geodesy, Earth, Planets and Space, 69 (1), 81.
120	Shao, HY (2017), Heat Modeling and Material Development of Mg-Based Nanomaterials Combined with Solid Oxide Fuel Cell for Stationary Energy Storage, ENERGIES, 10 (11), 1767.
121	Lv, F.Y., Zhang, P., Orejon, D., Askounis, A. and Shen, B. (2017), Heat transfer performance of a lubricant-infused thermosyphon at various filling ratios, International Journal of Heat and Mass Transfer, 115, 725-736.
122	Hafez, I. H., Berber, M. R., Fujigaya, T. and Nakashima, N. (2017), High electronic conductivity and air stability of ultrasmall copper-metal nanoparticles supported on pyridine-based polybenzimidazole carbon nanotube composite, ChemCatChem, 9, 4282-4286.
123	Yamasaki, S., Kuwamura, G., Morita, H., Hasegawa, D., Kojio, K. and Takahara, A. (2017), High performance polyurethane elastomers using new cyclaliphatic diisocyanate, Nihon Reoroji Gakkaishi, 45 (5), 261-268.
124	Palodkar, A.V., Anupam, K., Roy, Z., Saha, B.B. and Halder, G.N. (2017), High pressure adsorption isotherms of nitrogen onto granular activated carbon for a single bed pressure swing adsorption refrigeration system, Heat and Mass Transfer/Waerme- und Stoffuebertragung, 53 (10), 3155-3166.
125	Mamada, M., Inada, K., Komino, T., Potscavage, W.J., Nakanotani, H. and Adachi, C. (2017), Highly Efficient Thermally Activated Delayed Fluorescence from an Excited-State Intramolecular Proton Transfer System, ACS Central Science, 3 (7), 769-777.

126	Kim, G., Yang, J., Nakashima, N., and Shiraki, T. (2017), Highly Microporous Nitrogen-doped Carbon Synthesized from Azine-linked Covalent Organic Framework and its Supercapacitor Function, Chemistry A Europeran Journal, 23, 1-8.
127	Takijiri, K., Morita, K., Nakazono, T., Sakai, K. and Ozawa, H. (2017), Highly stable chemisorption of dyes with pyridyl anchors over TiO ₂ : Application in dye-sensitized photoelectrochemical water reduction in aqueous media, Chemical Communications, 53 (21), 3042-3045.
128	Muramoto, A., Kikuchi, Y., Tachikawa, Y., Lyth, S.M., Shiratori, Y., Taniguchi, S. and Sasaki, K. (2017), High-pressure C-H-O diagrams: Fuel composition, carbon deposition, and open circuit voltage of pressurized SOFCs, International Journal of Hydrogen Energy, 42 (52), 30769-30786.
129	Razavi-Khosroshahi, HH., Edalati, K., Wu, J., Nakashima, Y., Arita, M., Ikoma, Y., Sadakiyo, M., Inagaki, Y., Staykov, A., Yamauchi, M., Horita, Z. and Fuji, M. (2017), High-pressure zinc oxide phase as visible-light-active photocatalyst with narrow band gap, Journal of Materials Chemistry A, 5, 20298-20303.
130	Fukushima, Y., Ikoma, Y., Edalati, K., Chon, B., Smith, D.J. and Horita, Z. (2017), High-resolution transmission electron microscopy analysis of bulk nanograined silicon processed by high-pressure torsion, Materials Characterization, 129, 163-168.
131	Tsuji, T., Ishibashi, J., Ishitsuka, K. and Kamata, R. (2017), Horizontal sliding of kilometre-scale hot spring area during the 2016 Kumamoto earthquake, Scientific Reports, 7, 42947.
132	S. Minato, R. Ghose, T. Tsuji, M. Ikeda, and K. Onishi. (2017), Hydraulic properties of closely-spaced dipping open fractures intersecting a fluid-filled borehole derived from tube-wave generation and scattering, Journal of Geophysical Research, Journal of Geophysical Research, 122 (10), 8003-8020.
133	Møller, K.T., Jensen, T.R., Akiba, E. and Li, HW. (2017), Hydrogen - A sustainable energy carrier, Progress in Natural Science: Materials International, 27 (1), 34-40.
134	Iwaoka, H., Arita, M. and Horita, Z. (2017), Hydrogen diffusion in ultrafine-grained iron with the body-centered cubic crystal structure, Philosophical Magazine Letters, 97 (4), 158-168.
135	Yamabe, J., Takakuwa, O., Matsunaga, H., Itoga, H. and Matsuoka, S. (2017), Hydrogen diffusivity and tensile-ductility loss of solution-treated austenitic stainless steels with external and internal hydrogen, International Journal of Hydrogen Energy, 42 (18), 13289-13299.
136	Nygren, K.E., Bertsch, K.M., Wang, S., Bei, H., Nagao, A. and Robertson, I.M. (2017), Hydrogen embrittlement in compositionally complex FeNiCoCrMn FCC solid solution alloy, Current Opinion in Solid State and Materials Science, 22 (1), 1-7.
137	Chapman, A.J., Fraser, T. and Itaoka, K. (2017), Hydrogen import pathway comparison framework incorporating cost and social preference: Case studies from Australia to Japan, INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 41, 2374-2391.
138	Wang, S., Nagao, A., Edalati, K., Horita, Z. and Robertson, I.M. (2017), Hydrogen-modified dislocation structure in a cyclically deformed ferritic-pearlitic low carbon steel, Acta Materialia, 144, 164-176.
139	Noda, Z., Hirata, K., Hayashi, A., Takahashi, T., Nakazato, N., Saigusa, K., Seo, A., Suzuki, K., Ariura, S., Shinkai, H. and Sasaki, K. (2017), Hydrogen pump-type impurity sensors for hydrogen fuels, International Journal of Hydrogen Energy, 42 (5), 3281-3293.
140	Yamabe, J., Yoshikawa, M., Matsunaga, H. and Matsuoka, S. (2017), Hydrogen trapping and fatigue crack growth property of low-carbon steel in hydrogen-gas environment, International Journal of Fatigue, 102, 202-213.
141	Matsunaga, H., Takakuwa, O., Yamabe, J. and Matsuoka, S. (2017), Hydrogen-enhanced fatigue crack growth in steels and its frequency dependence, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375 (2098), 20160412.
142	Macadre, A., Tsuchiyama, T. and Takaki, S. (2017), Hydrogen-induced increase in phase stability in metastable austenite of various grain sizes under strain, Jounal of Materials Science, 52 (6), 3419-3428.

143	Zitolo, A., Ranjbar-Sahraie, N., Mineva, T., Li, J., Jia, Q., Stamatin, S., Harrington, G.F., Lyth, S.M., Krtil, P., Mukerjee, S., Fonda, E. and Jaouen, F. (2017), Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction, Nature Communications, 8 (1), 957.
144	Ting Chen, George F. Harrington, Kazunari Sasaki, and Nicola H. Perry (2017), Impact of microstructure and crystallinity on surface exchange kinetics of strontium titanium iron oxide perovskite by in situ optical transmission relaxation approach, Journal of Materials Chemistry A, 5 (4), 23006-23019.
145	Singh, S., Jiang, F. and Tsuji, T. (2017), Impact of the kinetic boundary condition on porous media flow in the lattice Boltzmann formulation, Physical Review E, 96 (1), 13303.
146	Kondou, C., Umemoto, S., Koyama, S. and Mitooka, Y. (2017), Improving the heat dissipation performance of a looped thermosyphon using low-GWP volatile fluids R1234ze(Z) and R1234ze(E) with a super-hydrophilic boiling surface, Applied Thermal Engineering, 118, 147-158.
147	Takizawa, Y; Watanabe, K; Kajita, T; Sumikawa, K; Masuda, T; Yumoto, M; Otagiri, Y; Horita, Z (2018), Incremental Feeding High-Pressure Sliding for Achieving Large Area of Severe Plastic Deformation, JOURNAL OF THE JAPAN INSTITUTE OF METALS, 82 (1), 25-31.
148	Wang, S., Nagao, A., Edalati, K., Horita, Z. and Robertson, I.M. (2017), Influence of hydrogen on dislocation self-organization in Ni, Acta Materialia, 135, 96-102.
149	Askounis, A., Kita, Y., Kohno, M., Takata, Y., Koutsos, V. and Sefiane, K. (2017), Influence of Local Heating on Marangoni Flows and Evaporation Kinetics of Pure Water Drops, Langmuir, 33 (23), 5666-5674.
150	Bencheikh, F., Sandanayaka, A.S.D., Matsushima, T., Ribierre, J.C. and Adachi, C. (2017), Influence of the organic film thickness on the second order distributed feedback resonator properties of an organic semiconductor laser, Journal of Applied Physics, 121 (23), 233107.
151	Pathikonda, G. and Christensen, K.T. (2017), Inner-outer interactions in a turbulent boundary layer overlying complex roughness, Physical Review Fluids, 2 (4), 044603.
152	Honda, Y., Watanabe, M., Hagiwara, H., Ida, S. and Ishihara, T. (2017), Inorganic/whole-cell biohybrid photocatalyst for highly efficient hydrogen production from water, Applied Catalysis B: Environmental, 210, 400-406.
153	Komino, T., Kuwae, H., Okada, A., Fu, W., Mizuno, J., Ribierre, JC., Oki, Y. and Adachi, C. (2017), In-Plane Anisotropic Molecular Orientation of Pentafluorene and Its Application to Linearly Polarized Electroluminescence, ACS Applied Materials and Interfaces, 9 (32), 27054-27061.
154	Verma, S., Hamasaki, Y., Kim, C., Huang, W., Lu, S., Jhong, HR.M., Gewirth, A.A., Fujigaya, T., Nakashima, N. and Kenis, P.J.A. (2018), Insights into the Low Overpotential Electroreduction of CO ₂ to CO on a Supported Gold Catalyst in an Alkaline Flow Electrolyzer, ACS Energy Letters, 3 (1), 193-198.
155	Matsuzaki, Y., Yagi, K. and Sugimura, J. (2017), In-situ fast and long observation system for friction surfaces during scuffing of steel, Wear, 386-372, 165-172.
156	Birbarah, P. and Miljkovic, N. (2017), Internal convective jumping-droplet condensation in tubes, International Journal of Heat and Mass Transfer, 114, 1025-1036.
157	Meng, S., Kajiwara, H. and Zhang, W. (2017), Internal flow effect on the cross-flow vortex-induced vibration of a cantilevered pipe discharging fluid, Ocean Engineering, 137, 120-128.
158	Matsushima, T., Hwang, S., Terakawa, S., Fujihara, T., Sandanayaka, A.S.D., Qin, C. and Adachi, C. (2017), Intrinsic carrier transport properties of solution-processed organic-inorganic perovskite films, Applied Physics Express, 10 (2), 024103.
159	Sadakiyo, M., Kuramoto, T., Kato, K. and Yamauchi, M. (2017), Introduction of an amino group on zeolitic imidazolate framework through a ligand-exchange reaction, Chemistry Letters, 46 (7), 1004-1006.
160	Lee, YS., Takamura, Y., Lee, YH., Leonard, K. and Matsumoto, H. (2018), Investigation of the electrical properties in indium and yttrium-doped barium zirconate based proton conducting perovskites, Materials Transactions, 59 (1), 19-22.

161	Pal, A., Shahrom, M.S.R., Moniruzzaman, M., Wilfred, C.D., Mitra, S., Thu, K. and Saha, B.B. (2017), Ionic liquid as a new binder for activated carbon based consolidated composite adsorbents, Chemical Engineering Journal, 326, 980-986.
162	Liu, X., Miao, Y., Li, M., Kirk, M.K., Maloy, S.A. and Stubbins, J.F. (2017), Ion-irradiation-induced microstructural modifications in ferritic/martensitic steel T91, Journal of Nuclear Materials, 490, 305-316.
163	Fujigaya, T., Saito, C., Han, Z. and Nakashima, N. (2017), Ionomer grafting to polymer-wrapped carbon nanotubes for polymer electrolyte membrane fuel cell electrocatalyst., Chemistry Letters, 46 (11), 1660-1663.
164	Higaki, Y., Frohlich, B., Yamamoto, A., Murakami, R., Kaneko, M., Takahara, A. and Tanaka, M. (2017), Ion-Specific Modulation of Interfacial Interaction Potentials between Solid Substrates and Cell-Sized Particles Mediated via Zwitterionic, Super-Hydrophilic Poly(sulfobetaine) Brushes, Journal of Physical Chemistry B, 121 (6), 1396-1404.
165	Yoshida, K., Matsushima, T., Shiihara, Y., Kuwae, H., Mizuno, J. and Adachi, C. (2017), Joule heat-induced breakdown of organic thin-film devices under pulse operation, Journal of Applied Physics, 121 (19), 195503.
166	Oh, J., Birbarah, P., Foulkes, T., Yin, SL., Rentauskas, M., Neely, J., Pilawa-Podgurski, R.C.N. and Miljkovic, N. (2017), Jumping-droplet electronics hot-spot cooling, Applied Physics Letters, 110 (12), 123107.
167	Pichler, M., Si, W., Haydous, F., Téllez, H., Druce, J., Fabbri, E., Kazzi, M.E., Döbeli, M., Ninova, S., Aschauer, U., Wokaun, A., Pergolesi, D. and Lippert, T. (2017), LaTiO _x N _y Thin Film Model Systems for Photocatalytic Water Splitting: Physicochemical Evolution of the Solid-Liquid Interface and the Role of the Crystallographic Orientation, Advanced Functional Materials, 27, 1605690.
168	Xu, Z., Liu, H. and Valocchi, A.J. (2017), Lattice Boltzmann simulation of immiscible two-phase flow with capillary valve effect in porous media, Water Resources Research, 53, 3770-3790.
169	Chen Y., Li Y., Valocchi A.J. and Christensen K.T. (2018), Lattice Boltzmann simulations of liquid CO ₂ displacing water in a 2D heterogeneous micromodel at reservoir pressure
	conditions, Journal of Contaminant Hydrology, In Press.
170	 conditions, Journal of Contaminant Hydrology, In Press. Kirchheim, R. (2017), Lattice discontinuities affecting the generation and annihilation of diffusible hydrogen and vice versa, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375 (2098), 20160403.
170 171	 conditions, Journal of Contaminant Hydrology, In Press. Kirchheim, R. (2017), Lattice discontinuities affecting the generation and annihilation of diffusible hydrogen and vice versa, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375 (2098), 20160403. Nakanotani, H., Furukawa, T., Hosokai, T., Hatakeyama, T. and Adachi, C. (2017), Light Amplification in Molecules Exhibiting Thermally Activated Delayed Fluorescence, Advanced Optical Materials, 5, 1700051.
170 171 172	 conditions, Journal of Contaminant Hydrology, In Press. Kirchheim, R. (2017), Lattice discontinuities affecting the generation and annihilation of diffusible hydrogen and vice versa, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375 (2098), 20160403. Nakanotani, H., Furukawa, T., Hosokai, T., Hatakeyama, T. and Adachi, C. (2017), Light Amplification in Molecules Exhibiting Thermally Activated Delayed Fluorescence, Advanced Optical Materials, 5, 1700051. Tu, D., Xu, CN., Yoshida, A., Fujihala, M., Hirotsu, J. and Zheng, XG. (2017), LiNbO₃:Pr³⁺: A Multipiezo Material with Simultaneous Piezoelectricity and Sensitive Piezoluminescence, Advanced Materials, 29, 1606914.
170 171 172 173	 conditions, Journal of Contaminant Hydrology, In Press. Kirchheim, R. (2017), Lattice discontinuities affecting the generation and annihilation of diffusible hydrogen and vice versa, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375 (2098), 20160403. Nakanotani, H., Furukawa, T., Hosokai, T., Hatakeyama, T. and Adachi, C. (2017), Light Amplification in Molecules Exhibiting Thermally Activated Delayed Fluorescence, Advanced Optical Materials, 5, 1700051. Tu, D., Xu, CN., Yoshida, A., Fujihala, M., Hirotsu, J. and Zheng, XG. (2017), LiNbO₃:Pr³⁺: A Multipiezo Material with Simultaneous Piezoelectricity and Sensitive Piezoluminescence, Advanced Materials, 29, 1606914. Cui, LS., Ruan, SB., Bencheikh, F., Nagata, R., Zhang, L., Inada, K., Nakanotani, H., Liao, LS. and Adachi, C. (2017), Long-lived efficient delayed fluorescence organic light-emitting diodes using n-type hosts, Nature Communications, 8 (1), 2250.
170 171 172 173 174	 conditions, Journal of Contaminant Hydrology, In Press. Kirchheim, R. (2017), Lattice discontinuities affecting the generation and annihilation of diffusible hydrogen and vice versa, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375 (2098), 20160403. Nakanotani, H., Furukawa, T., Hosokai, T., Hatakeyama, T. and Adachi, C. (2017), Light Amplification in Molecules Exhibiting Thermally Activated Delayed Fluorescence, Advanced Optical Materials, 5, 1700051. Tu, D., Xu, CN., Yoshida, A., Fujihala, M., Hirotsu, J. and Zheng, XG. (2017), LiNbO₃:Pr³⁺: A Multipiezo Material with Simultaneous Piezoelectricity and Sensitive Piezoluminescence, Advanced Materials, 29, 1606914. Cui, LS., Ruan, SB., Bencheikh, F., Nagata, R., Zhang, L., Inada, K., Nakanotani, H., Liao, LS. and Adachi, C. (2017), Long-lived efficient delayed fluorescence organic light-emitting diodes using n-type hosts, Nature Communications, 8 (1), 2250. Nguyen, D.H., Narikiyo, T. and Kawanishi, M. (2017), Low-rank Distributed Consensus Controller Design for Linear Multi-Agent Systems under Randomly Switching Directed Topologies and Model Uncertainties, IFAC-PapersOnLine, 50 (1), 2465-2470.
170 171 172 173 174 175	 conditions, Journal of Contaminant Hydrology, In Press. Kirchheim, R. (2017), Lattice discontinuities affecting the generation and annihilation of diffusible hydrogen and vice versa, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375 (2098), 20160403. Nakanotani, H., Furukawa, T., Hosokai, T., Hatakeyama, T. and Adachi, C. (2017), Light Amplification in Molecules Exhibiting Thermally Activated Delayed Fluorescence, Advanced Optical Materials, 5, 1700051. Tu, D., Xu, CN., Yoshida, A., Fujihala, M., Hirotsu, J. and Zheng, XG. (2017), LiNbO₃:Pr³⁺: A Multipiezo Material with Simultaneous Piezoelectricity and Sensitive Piezoluminescence, Advanced Materials, 29, 1606914. Cui, LS., Ruan, SB., Bencheikh, F., Nagata, R., Zhang, L., Inada, K., Nakanotani, H., Liao, LS. and Adachi, C. (2017), Long-lived efficient delayed fluorescence organic light-emitting diodes using n-type hosts, Nature Communications, 8 (1), 2250. Nguyen, D.H., Narikiyo, T. and Kawanishi, M. (2017), Low-rank Distributed Consensus Controller Design for Linear Multi-Agent Systems under Randomly Switching Directed Topologies and Model Uncertainties, IFAC-PapersOnLine, 50 (1), 2465-2470. Sett, S., Yan, X., Barac, G., Bolton, LW. and Miljkovic, N. (2017), Lubricant-Infused Surfaces for Low-Surface-Tension Fluids: Promise versus Reality, ACS APPLIED MATERIALS & INTERFACES, 9 (41), 36400-36408.
170 171 172 173 174 175 176	 conditions, Journal of Contaminant Hydrology, In Press. Kirchheim, R. (2017), Lattice discontinuities affecting the generation and annihilation of diffusible hydrogen and vice versa, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375 (2098), 20160403. Nakanotani, H., Furukawa, T., Hosokai, T., Hatakeyama, T. and Adachi, C. (2017), Light Amplification in Molecules Exhibiting Thermally Activated Delayed Fluorescence, Advanced Optical Materials, 5, 1700051. Tu, D., Xu, CN., Yoshida, A., Fujihala, M., Hirotsu, J. and Zheng, XG. (2017), LiNbO₃:Pr³⁺: A Multipiezo Material with Simultaneous Piezoelectricity and Sensitive Piezoluminescence, Advanced Materials, 29, 1606914. Cui, LS., Ruan, SB., Bencheikh, F., Nagata, R., Zhang, L., Inada, K., Nakanotani, H., Liao, LS. and Adachi, C. (2017), Long-lived efficient delayed fluorescence organic light-emitting diodes using n-type hosts, Nature Communications, 8 (1), 2250. Nguyen, D.H., Narikiyo, T. and Kawanishi, M. (2017), Low-rank Distributed Consensus Controller Design for Linear Multi-Agent Systems under Randomly Switching Directed Topologies and Model Uncertainties, IFAC-PapersOnLine, 50 (1), 2465-2470. Sett, S., Yan, X., Barac, G., Bolton, LW. and Miljkovic, N. (2017), Lubricant-Infused Surfaces for Low-Surface-Tension Fluids: Promise versus Reality, ACS APPLIED MATERIALS & INTERFACES, 9 (41), 36400-36408. Nakai, H., Kuyama, M., Seo, J., Goto, T., Matsumoto, T. and Ogo, S. (2017), Luminescent Tb(III) and Sm(III) complexes with a 1,4,7-triazacyclononane-based tris-aryloxide ligand for high-performance oxygen sensors, Dalton Transactions, 46 (28), 9126-9130.

178	Nakada, N., Kawasaki, S., Kogakura, Y., Tsuchiyama, T. and Takaki, S. (2017), Matrix switch related to microstructural connectivity and its effect on strength in metals with duplex microstructure, Materials Science and Engineering A, 690, 270-276.
179	Li, QY., Xia, K., Zhang, J., Zhang, Y., Li, Q., Takahashi, K. and Zhang, X. (2017), Measurement of specific heat and thermal conductivity of supported and suspended graphene by a comprehensive Raman optothermal method, Nanoscale, 9 (30), 10784-10793.
180	Alam, MJ., Islam, MA., Kariya, K. and Miyara, A. (2017), Measurement of thermal conductivity of cis-1,1,1,4,4,4-hexafluoro-2-butene (R-1336mzz(Z)) by the transient hot-wire method, International Journal of Refrigeration, 84, 220-227.
181	Iwaoka, H., Ide, T., Arita, M. and Horita, Z. (2017), Mechanical property and hydrogen permeability of ultrafine-grained Pd-Ag alloy processed by highpressure torsion, INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 42 (38), 24176-24182.
182	Park, KL., Ma, W., Higaki, Y. and Takahara, A. (2017), Mechanically Enhanced Hyaluronic Acid Hybrid Hydrogels with Halloysite Nanotubes, Chemistry Letters, 46 (8), 1217-1219.
183	Fu, H., Nan, K., Froeter, P., Huang, W., Liu, Y., Wang, Y., Wang, J., Yan, Z., Luan, H., Guo, X., Zhang, Y., Jiang, C., Li, L., Dunn, A.C., Li, X., Huang, Y., Zhang, Y. and Rogers, J.A. (2017), Mechanically-Guided Deterministic Assembly of 3D Mesostructures Assisted by Residual Stresses, Small, 13, 1700151.
184	Matsumoto, T., Kishima, T., Yatabe, T., Yoon, KS. and Ogo, S. (2017), Mechanistic Insight into Switching between H ₂ or O ₂ -Activation by Simple Ligand Effects of [NiFe]hydrogenase Models, Organometallics, 36 (20), 3883-3890.
185	Jing, YH., Matsumoto, H. and Aluru, NR. (2018), Mechanistic Insights into Hydration of Solid Oxides, CHEMISTRY OF MATERIALS, 30 (1), 138-144.
186	Tokunaga, T., Yatabe, T., Matsumoto, T., Ando, T., Yoon, KS. and Ogo, S. (2017), Mechanistic investigation of the formation of H ₋₂ from HCOOH with a dinuclear Ru model complex for formate hydrogen lyase, SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 18 (1), 870-876.
187	Yoshida, A., Liu, L., Tu, D., Kainuma, S. and Xu, CN. (2017), Mechanoluminescent testing as an efficient inspection technique for the management of infrastructures, Journal of Disaster Research, 12 (3), 506-514.
188	Li, Y., Kazemifar, F., Blois, G. and Christensen, K. T. (2017), Micro-PIV measurements of multiphase flow of water and liquid CO ₂ in 2-D heterogeneous porous micromodels, WATER RESOURCES RESEARCH, 53, 6178-6196.
189	Thu, K., Saha, BB., Mitra, S. and Chua, KJ. (2017), Modeling and simulation of mass recovery process in adsorption system for cooling and desalination, Energy Procedia, 105, 2004-2009.
190	Liang, Y., Tsuji, S., Jia, J., Tsuji, T. and Matsuoka, T. (2017), Modeling CO2-Water-Mineral Wettability and Mineralization for Carbon Geosequestration, Accounts of Chemical Research, 50 (7), 1530-1540.
191	Pham, HC., Taniguchi, S., Inoue, Y., Matsuda, J., Chou, JT., Misu, Y., Matsuoka, K. and Sasaki, K. (2017), Modification of Surface Oxide Layer of Fe-Cr-Al Alloy with Coating Materials for SOFC Applications, Fuel Cells, 17 (1), 83-89.
192	Yoshimaru, S., Sadakiyo, M., Staykov, A., Kato, K. and Yamauchi, M. (2017), Modulation of the catalytic activity of Pt nanoparticles through charge-transfer interactions with metal-organic frameworks, Chemical Communications, 53 (50), 6720-6723.
193	Higaki, Y., Suzuki, K., Kiyoshima, Y., Toda, T., Nishiura, M., Ohta, N., Masunaga, H., Hou, Z. and Takahara, A. (2017), Molecular Aggregation States and Physical Properties of Syndiotactic Polystyrene/Hydrogenated Polyisoprene Multiblock Copolymers with Crystalline Hard Domain, Macromolecules, 50 (16), 6184-6191.
194	Geng, Y., Cui, LS., Kim, JU., Nakanotani, H. and Adachi, C. (2017), Molecular Design for Blue Thermal Activated Delayed Fluorescence Materials: Substitution Position Effect, CHEMISTRY LETTERS, 46 (10), 1490-1492.
195	Wu, H., Higaki, Y. and Takahara, A. (2017), Molecular self-assembly of one-dimensional polymer nanostructures in nanopores of anodic alumina oxide templates, Progress in Polymer Science, 77, 95-117.

196	Kearney, K., Iyer, A., Rockett, A., Staykov, A. and Ertekin, E. (2018), Multiscale Computational Design of Functionalized Photocathodes for H ₂ Generation, Journal of the American Chemical Society, 140 (1), 50-53.
197	Ogawa, Y., Birenis, D., Matsunaga, H., Thøgersen, A., Prytz, Ø., Takakuwa, O. and Yamabe, J. (2017), Multi-scale observation of hydrogen-induced, localized plastic deformation in fatigue-crack propagation in a pure iron, SCRIPTA MATERIALIA, 140, 13-17.
198	Tomo, Y., Takahashi, K., Nishiyama, T., Ikuta, T. and Takata, Y. (2017), Nanobubble nucleation studied using Fresnel fringes in liquid cell electron microscopy, International Journal of Heat and Mass Transfer, 108 (Part B), 1460-1465.
199	Hoang, T.T.H., Ma, S.C., Gold, J.I., Kenis, P.J.A. and Gewirth, A.A. (2017), Nanoporous Copper Films by Additive-Controlled Electrodeposition: CO ₂ Reduction Catalysis, ACS Catalysis, 7 (5), 3313-3321.
200	Teshima H., Nishiyama, H. and Takahashi, K. (2017), Nanoscale pinning effect evaluated from deformed nanobubbles, The Journal of Chemical Physics, 146, 014708.
201	Cha, HY., Wu, A., Kim, MK., Saigusa, K., Liu, AH. and Miljkovic, N. (2017), Nanoscale-Agglomerate-Mediated Heterogeneous Nucleation, NANO LETTERS, 17 (12), 7544-7551.
202	Shiraki, T., Uchimura, S., Shiraishi, T., Onitsuka, H. and Nakashima, N. (2017), Near infrared photoluminescence modulation by defect site design using aryl isomers in locally functionalized single-walled carbon nanotubes, Chemical Communications, 53 (93), 12544-12547.
203	Tsuji, Y., Yamamoto, K., Yamauchi, K. and Sakai, K. (2017), Near-Infrared Light-Driven Hydrogen Evolution from Water Using a Polypyridyl Triruthenium Photosensitizer, Angewandte Chemie - International Edition, 57, 208.
204	Kamimura S., Xu CN., Yamada H., Marriott G., Hyodo K. and Ohno T. (2017), Near-infrared luminescence from double-perovskite Sr ₃ Sn ₂ O ₇ :Nd ₃₊ : A new class of probe for in vivo imaging in the second optical window of biological tissue, Journal of the Ceramic Society of Japan, 125 (7), 591-595.
205	Yamanaka, T., Nakanotani, H., Hara, S., Hirohata, T. and Adachi, C. (2017), Near-infrared organic light-emitting diodes for biosensing with high operating stability, Applied Physics Express, 10 (7), 074101.
206	Fan, Y., Ida, S., Staykov, A., Akbay, T., Hagiwara, H., Matsuda, J., Kaneko, K. and Ishihara, T. (2017), Ni-Fe Nitride Nanoplates on Nitrogen-Doped Graphene as a Synergistic Catalyst for Reversible Oxygen Evolution Reaction and Rechargeable Zn-Air Battery, Small, 13, 1700099.
207	Yoon, KS., Nguyen, N.T., Tran, K.T., Tsuji, K. and Ogo, S. (2017), Nitrogen fixation genes and nitrogenase activity of the non-heterocystous cyanobacterium Thermoleptolyngbya sp. O-77, Microbes and Environments, 32 (4), 324-329.
208	Wang., C, Tang., Z, Bristow, N., Blois, G., Christensen, KT. and Anderson, W. (2017), Numerical and experimental study of flow over stages of an offset merger dune interaction, COMPUTERS & FLUIDS, 158, 72-83.
209	Matsue, K., Hiwaki, T. and Yamamoto, N. (2017), On the construction of Lyapunov functions with computer assistance, Journal of Computational and Applied Mathematics, 319, 385-412.
210	Ogo, S., Mori, Y., Ando, T., Matsumoto, T., Yatabe, T., Yoon, KS., Hayashi, H. and Asano, M. (2017), One Model, Two Enzymes: Activation of Hydrogen and Carbon Monoxide, Angewandte Chemie - International Edition, 56, 9723.
211	Razavi-Khosroshahi, H., Edalati, K., Emami, H., Akiba, E., Horita, Z. and Fuji, M. (2017), Optical Properties of Nanocrystalline Monoclinic Y2O3 Stabilized by Grain Size and Plastic Strain Effects via High-Pressure Torsion, Inorganic Chemistry, 56 (5), 2576-2580.
212	Hoa, N.D., Narikiyo, T. and Kawanishi, M. (2017), Optimal Demand Response and Real-time Pricing by a Sequential Distributed Consensus-based ADMM Approach, IEEE Transactions on Smart Grid, 1-1.
213	Parthasarathy, P., Narayanan, KS., Ceylan, S. and Pambudi, NA. (2017), Optimization of Parameters for the Generation of Hydrogen in Combined Slow Pyrolysis and Steam Gasification of Biomass, ENERGY & FUELS, 31 (12), 13692-13704.
214	Kim, D.H., Inada, K., Zhao, L., Komino, T., Matsumoto, N., Ribierre JC. and Adachi, C. (2017), Organic light emitting diodes with horizontally oriented thermally activated delayed fluorescence emitters, Journal of Materials Chemistry C, 5 (5), 1216-1223.
-----	---
215	Kabe, R. and Adachi, C. (2017), Organic long persistent luminescence, NATURE, 550 (7676), 384-387.
216	Wu, H., Higaki, Y., Nojima, S. and Takahara, A. (2017), Orientation and crystallization of regioregular poly(3-dodecylthiophene) in alumina nanopores, SOFT MATTER, 23 (16), 4661-4666.
217	Sauvage, X., Lee, S., Matsuda, K. and Horita, Z. (2017), Origin of the influence of Cu or Ag micro-additions on the age hardening behavior of ultrafine-grained AI-Mg-Si alloys, Journal of Alloys and Compounds, 710, 199-204.
218	Selvam, C., Solaimalai Raja, R., Mohan Lal, D. and Harish, S. (2017), Overall heat transfer coefficient improvement of an automobile radiator with graphene based suspensions, International Journal of Heat and Mass Transfer, 115, 580-588.
219	Yeyongchaiwat, J., Matsumoto, H. and Ishihara, T. (2017), Oxidative reforming of propane with oxygen permeating membrane reactor using Pr ₂ Ni _{0.75} Cu _{0.25} Ga _{0.05} O ₄ perovskite related mixed conductor, Solid State Ionics, 301, 23-27.
220	Parsa, M., Boubaker, R., Harmand, S., Sefiane, K., Bigerelle, M. and Deltombe, R. (2017), Patterns from dried water-butanol binary-based nanofluid drops, Journal of Nanoparticles Research, 19 (8), 268.
221	Kareem, M.W., Gilani, S.I., Habib, K., Irshad, K. and Saha, B.B. (2017), Performance analysis of a multi-pass solar thermal collector system under transient state assisted by porous media, Solar Energy, 158, 782-791.
222	Ali M.H., Kariya K. and Miyara A. (2017), Performance analysis of slinky horizontal ground heat exchangers for a ground source heat pump system, Resources, 6 (4), 56.
223	Mitra, S., Thu, K., Saha, B.B. and Dutta, P. (2017), Performance evaluation and determination of minimum desorption temperature of a two-stage air cooled silica gel/water adsorption system, Applied Energy, 206, 507-518.
224	Pambudi, N.A., Fasola, M., Perdana, L.V., Laurensia, R., Wijayanto, D.S., Imran, M. and Saw, L.H. (2017), Performance evaluation and optimization of fluidized bed boiler in ethanol plant using irreversibility analysis, Case Studies in Thermal Engineering, 10, 283-291.
225	Aslam, M.M.A., Khan, Z.M., Sultan, M., Niaz, Y., Mahmood, M.H., Shoaib, M., Shakoor, A. and Ahmad, M. (2017), Performance evaluation of trickling filter-based wastewater treatment system utilizing cotton sticks as filter media, Polish Journal of Environmental Studies, 26 (5), 1955-1962.
226	Tanaka, S., Nakazono, T., Yamauchi, K. and Sakai, K. (2017), Photochemical H2 evolution catalyzed by porphyrin-based cubic cages singly and doubly encapsulating PtCl ₂ (4,4'-dimethyl-2,2'-bipyridine), Chemistry Letters, 46 (10), 1573-1575.
227	Ida, S., Kearney, K., Futagami, T., Hagiwara, H., Sakai, T., Watanabe, M., Rockett, A. and Ishihara, T. (2017), Photoelectrochemical H ₂ evolution using TiO ₂ -coated CaFe ₂ O ₄ without an external applied bias under visible light irradiation at 470 nm based ondevice modeling, Sustainable Energy & Fuels, 1, 280-287.
228	Fukuda, K. and Morita, T. (2017), Physical model of adhesive wear in early stage of sliding, Wear, 376-377, 1528-1533.
229	Somekawa, T., Matsuzaki, Y., Sugahara, M., Tachikawa, Y., Matsumoto, H., Taniguchi, S. and Sasaki, K. (2017), Physicochemical properties of Ba(Zr,Ce)O ₃ -δ-based proton-conducting electrolytes for solid oxide fuel cells in terms of chemical stability and electrochemical performance, International Journal of Hydrogen Energy, 42 (26), 16722-16730.
230	Komiyama, H., Oyama, T., Mori, T. and Yasuda, T. (2017), pi-conjugated naphthodithiophene homopolymers bearing alkyl/alkylthio-thienyl substituents: facile synthesis using hexamethylditin and their charge-transport and photovoltaic properties, POLYMER JOURNAL, 49 (10), 729-734.
231	Matsuno, H., Tsukamoto, R., Oda, Y. and Tanaka, K. (2017), Platelet adhesion on the surface of a simple poly(vinyl ether), Polymer, 116, 479-486.

232	Kuroki, T., Sakoda, N., Shinzato, K., Monde, M. and Takata, Y. (2017), Prediction of transient temperature of hydrogen flowing from pre-cooler of refueling station to inlet of vehicle tank, International Journal of Hydrogen Energy, 43 (3), 1846-1854.
233	Basile, A., Saha, B.B. and Arico, A.S. (2017), Preface to the special issue section on "The International Symposium on Innovative Materials for Processes in Energy Systems (IMPRES 2016), 23-26 October 2016, Taormina, Sicily, Italy", International Journal of Hydrogen Energy, 42, 26787-26788.
234	Rudiyanto, B., Illah, I., Pambudi, N.A., Cheng, CC., Adiprana, R., Imran, M., Huat Saw, L. and Handogo, R. (2017), Preliminary analysis of dry-steam geothermal power plant by employing exergy assessment: Case study in Kamojang geothermal power plant, Indonesia, Case Studies in Thermal Engineering, 10, 292-301.
235	Mersha, A., Selyanchyn, R. and Fujikawa, S. (2017), Preparation of large, ultra-flexible and free-standing nanomembranes of metal oxide–polymer composite and their gas permeation properties, Clean Energy, 1 (1), 80-89.
236	Kordolemis, A., Giannakopoulos, A.E. and Aravas, N. (2017), Pretwisted beam subjected to thermal loads: A gradient thermoelastic analogue, Journal of Thermal Stresses, 40 (10), 1231-1253.
237	Mamad Gandidi, I., Susila, M.D. and Pambudi, N. A. (2017), Production of valuable pyrolytic oils from mixed Municipal Solid Waste (MSW) in Indonesia using non-isothermal and isothermal experimental, Case Studies in Thermal Engineering, 10, 357-361.
238	Tse, E.C.M., Barile, C.J., Li, Y., Zimmerman, S.C., Hosseini, A. and Gewirth, A.A. (2017), Proton transfer dynamics dictate quinone speciation at lipid-modified electrodes, Physical Chemistry Chemical Physics, 19 (10), 7086-7093.
239	Punlrawee, W., Yamanaka, A., Matsuda, J., Mitoma, Y., Nishiyama, N. and Ishihara, T. (2018), Pt-Ce _{0.9} Cu _{0.1} O ₂ /activated carbon as highly active and stable HI decomposition catalyst, Int. J. Energy Research, 42, 1088-1097.
240	Asano, M., Masumura, T., Tsuchiyama, T., Takaki, S., Takahashi, J. and Ushioda, K. (2017), Quantitative evaluation of Cu particle dissolution in cold-worked ferritic steel, SCRIPTA MATERIALIA, 140, 18-22.
241	Matsue, K., Ogurisu, O. and Segawa, E. (2017), Quantum search on simplicial complexes, Quantum Studies: Mathematics and Foundations, 1-27.
242	Konno, N., Matsue, K., Mitsuhashi, H. and Sato, I. (2017), Quaternionic quantum walks of Szegedy type and zeta functions of graphs, Quantum Information and Computation, 17 (15-16), 1349-1371.
243	Shen, X., Chen, T., Bishop, S.R., Perry, N. and Sasaki, K. (2017), Redox Cycling Induced Ni Exsolution in Gdo.1Ceo.8Nio.1O2 - (Sro.9Lao.1)0.9Tio.9Nio.1O3 Composite Solid Oxide Fuel Cell Anodes, J. Power Sources, 370, 122-130.
244	Liu, L. and Ishihara, T. (2018), Reduction mechanism of selective NO reduction on Pd-NiO/(Y _{0.99} Ba _{0.01}) ₂ O ₃ catalyst, Applied Catalysis A: General, 550, 90-97.
245	Lin, HJ., Li, HW., Murakami, H. and Akiba, E. (2018), Remarkably improved hydrogen storage properties of LiNH ₂ -LiH composite via the addition of CeF ₄ , Journal of Alloys and Compounds, 735 (25), 1017-1022.
246	Sugimoto, S., Inutsuka, M., Kawaguchi, D. and Tanaka, K. (2018), Reorientation Kinetics of Local Conformation of Polyisoprene at Substrate Interface, ACS MACRO LETTERS, 7 (1), 85-89.
247	Kikuchi, Y., Ouchida, K., Kanematsu, Y., Ohara, S. and Fukushima, Y. (2017), Retrofit Energy Integration for Selective Fermentation in Cane Sugar Mills under Hot/Cold Energy Availability, Journal of Chemical Engineering of Japan, 50 (4), 297-308.
248	Javadian, P., GharibDoust, SP., Li, HW., Sheppard, DA., Buckley, CE. and Jensen, TR. (2017), Reversibility of LiBH ₄ Facilitated by the LiBH ₄ -Ca(BH ₄) ₂ Eutectic, JOURNAL OF PHYSICAL CHEMISTRY C, 121 (34), 18439-18449.
249	Tan, Z. and Ishihara, T. (2017), Reversible operation of tubular type solid oxide fuel cells using LaGaO ₃ electrolyte porous layer on dense film prepared by dip-coating method, Journal of the Electrochemical Society, 164 (14), F1690-F1696.

250	Rezania, S., Din, M.F.M., Taib, S.M., Sohaili, J., Chelliapan, S., Kamyab, H. and Saha, B.B. (2017), Review on fermentative biohydrogen production from water hyacinth, wheat straw and rice straw with focus on recent perspectives, International Journal of Hydrogen Energy, 42 (33), 20955-20969.
251	Matsue K. (2017), Rigorous numerics for fast-slow systems with one-dimensional slow variable: Topological shadowing approach, Topological Methods in Nonlinear Analysis, 50 (2), 357-468.
252	Nguyen, D.H., Narikiyo, T. and Kawanishi, M. (2017), Robust Consensus Analysis and Design under Relative State Constraints or Uncertainties, IEEE Transactions on Automatic Control, 1-1.
253	Sheth, J., Chen, D., Tuller, H.L., Misture, S.T., Bishop, S.R. and Sheldon, B.W. (2017), Role of grain size on redox induced compositional stresses in Pr doped ceria thin films, Physical Chemistry Chemical Physics, 19 (19), 12206-12220.
254	Zhang, P., Lv, F.Y., Askounis, A., Orejon, D. and Shen, B. (2017), Role of impregnated lubricant in enhancing thermosyphon performance, International Journal of Heat and Mass Transfer, 109, 1229-1238.
255	Mahyuddin, M.H., Staykov, A., Shiota, Y., Miyanishi, M. and Yoshizawa, K. (2017), Roles of Zeolite Confinement and Cu-O-Cu Angle on the Direct Conversion of Methane to Methanol by $[Cu2(\mu-O)]^{2+-}$ Exchanged AEI, CHA, AFX, and MFI Zeolites, ACS Catalysis, 7 (6), 3741-3751.
256	Edalati, K., Masuda, T., Arita, M., Furui, M., Sauvage, X., Horita, Z. and Valiev, R.Z. (2017), Room-Temperature Superplasticity in an Ultrafine-Grained Magnesium Alloy, Scientific Reports, 7 (1), 2662.
257	Nguyen, HK., Konomi, A., Sugimoto, S., Inutsuka, M., Kawaguchi, D. and Tanaka, K. (2018), Rotational Dynamics of a Probe in Rubbery Polymers Characterized by Time-Resolved Fluorescence Anisotropy Measurement, MACROMOLECULAR CHEMISTRY AND PHYSICS, 219 (3), 1700329.
258	Sugimoto, J., Futamura, S., Kawabata, T., Lyth, S.M., Shiratori, Y., Taniguchi, S. and Sasaki, K. (2017), Ru-based SOFC anodes: Preparation, performance, and durability, International Journal of Hydrogen Energy, 42 (10), 6950-6964.
259	Kim, J.D., Mohseni, P.K., Balasundaram, K., Ranganathan, S., Pachamuthu, J., Coleman, J.J. and Li, X. (2017), Scaling the Aspect Ratio of Nanoscale Closely Packed Silicon Vias by MacEtch: Kinetics of Carrier Generation and Mass Transport, Advanced Functional Materials, 27, 1605614.
260	Liu, L., Murakami, K., Ida, S. and Ishihara, T. (2017), Selective reduction of NOx by C ₃ H ₆ over Pd–NiO/(Y _{0.99} Ba _{0.01}) ₂ O ₃ under oxygen excess conditions, Catalysis Communications, 100, 5-9.
261	Sengodan S., Ju YW., Kwon O., Jun, A., Jeong H.Y., Ishihara T., Shin J. and Kim G. (2017), Self-Decorated MnO Nanoparticles on Double Perovskite Solid Oxide Fuel Cell Anode by in Situ Exsolution, ACS Sustainable Chemistry and Engineering, 5 (10), 9207-9213.
262	Niste, V.B., Ratoi, M., Tanaka, H., Xu, F., Zhu, Y. and Sugimura, J. (2017), Self-lubricating AI-WS ₂ composites for efficient and greener tribological parts, Scientific Reports, 7 (1), 14665.
263	Mae, K., Toyama, H., Nawa-Okita, E., Yamamoto, D., Chen, YJ., Yoshikawa, K., Toshimitsu, F., Nakashima, N., Matsuda, K. and Shioi, A. (2017), Self-organized micro-spiral of single-walled carbon nanotubes, Scientific Reports, 7, 5267.
264	Conejo-Herrera, M., Cubero-Sesin, JM., Horita, Z. and Kim, HS. (2017), Simulation for processing of a Ti-6AI-7Nb alloy by equal-channel angular pressing (ECAP) using the finite element method, TECNOLOGIA EN MARCHA, 30 (2), 25-35.
265	Orejon, D., Shardt, O., Gunda, N.S.K., Ikuta, T., Takahashi, K., Takata, Y. and Mitra, S.K. (2017), Simultaneous dropwise and filmwise condensation on hydrophilic microstructured surfaces, International Journal of Heat and Mass Transfer, 114, 187-197.
266	Sano, T.G., Yamaguchi, T. and Wada, H. (2017), Slip Morphology of Elastic Strips on Frictional Rigid Substrates, Physical Review Letters, 118 (17), 178001.
267	Fraser, T. and Chapman, AJ. (2018), Social equity impacts in Japan's mega-solar siting process, ENERGY FOR SUSTAINABLE DEVELOPMENT, 42, 136-151.

268	Mori, T., Oyama, T., Komiyama, H. and Yasuda, T. (2017), Solution-grown unidirectionally oriented crystalline thin films of a U-shaped thienoacenebased semiconductor for high-performance organic field-effect transistors, Journal of Materials Chemistry C, 5 (24), 5872-5876.
269	Nimiya, H., Ikeda, T. and Tsuji, T. (2017), Spatial and temporal seismic velocity changes on Kyushu Island during the 2016 Kumamoto earthquake, Science Advances, 3 (11), e1700813.
270	Uddin, K., Islam, M.A., Mitra, S., Lee, J.B., Thu, K. and Saha, B.B. (2018), Specific heat capacities of carbon-based adsorbents for adsorption heat pump application, Applied Thermal Engineering, 129, 117-126.
271	Bayer, T., Selyanchyn, R., Fujikawa, S., Sasaki, K. and Lyth, S.M. (2017), Spray-painted graphene oxide membrane fuel cells, Journal of Membrane Science, 541, 347-357.
272	Tan, Z. and Ishihara, T. (2017), Sr(La)TiO ₃ anode substrate for low Ni diffusion in Sr- and Mg-doped LaGaO ₃ film prepared with co-sintering method for intermediate temperature tubular type solid oxide fuel cells, Journal of the Electrochemical Society, 164 (7), F815-F820.
273	Liu, X., Miao, Y., Wu, Y., Maloy, S.A. and Stubbins, J.F. (2017), Stability of nanoclusters in an oxide dispersion strengthened alloy under neutron irradiation, Scripta Materialia, 138, 57-61.
274	Gunay, AA., Sett, S., Oh, J. and Miljkovic, N. (2017), Steady Method for the Analysis of Evaporation Dynamics, LANGMUIR, 33 (43), 12007-12015.
275	Toward a low carbon society, encompassing the issues of sustainability and societal equity in Japan, Journal of Cleaner Production, 172, 1014-1024.
276	Mohamed, I.F., Masuda, T., Lee, S., Edalati, K., Horita, Z., Hirosawa, S., Matsuda, K., Terada, D. and Omar, M.Z. (2017), Strengthening of A2024 alloy by high-pressure torsion and subsequent aging, Materials Science and Engineering, 704, 112-118.
277	Shomura, Y., Taketa, M., Nakashima, H., Tai, H., Nakagawa, H., Ikeda, Y., Ishii, M., Igarashi, Y., Nishihara, H., Yoon, KS., Ogo, S., Hirota, S. and Higuchi, Y. (2017), Structural basis of the redox switches in the NAD+-reducing soluble [NiFe]-hydrogenase, Science, 357 (6354), 928-932.
278	González-Hernández, J.E., Cubero-Sesin, J.M., Ulate-Kolitsky, E., Navarro, P., Petretti, S. and Horita, Z. (2017), Structural refinement of titanium-aluminum-niobium alloy for biomedical applications, Journal of Renewable Materials, 5, 300-306.
279	Jeong, D., Jun, A., Ju, YW., Hyodo, J., Shin, J., Ishihara, T., Lim, TH. and Kim, G. (2017), Structural, Electrical, and Electrochemical Characteristics of LnBa _{0.5} Sr _{0.5} Co _{1.5} Fe _{0.5} O _{5+δ} (Ln=Pr, Sm, Gd) as Cathode Materials in Intermediate-Temperature Solid Oxide Fuel Cells, Energy Technology, 5, 1337.
280	Eng, C., Ikeda, T. and Tsuji, T. (2017), Study of the Nankai seismogenic fault using dynamic wave propagation modelling of digital rock from the Nobeoka Fault, Exploration Geophysics, 49 (1), 11-20.
281	Pal, A., Thu, K., Mitra, S., El-Sharkawy, I.I., Saha, B.B., Kil, HS., Yoon, SH. and Miyawaki, J. (2017), Study on biomass derived activated carbons for adsorptive heat pump application, International Journal of Heat and Mass Transfer, 110, 7-19.
282	Shiraishi, T., Shiraki, T., and Nakashima, N. (2017), Substituent Effects on the Redox States of Locally Functionalized Single-Walled Carbon Nanotubes Revealed by in situ Photoluminescence Spectroelectrochemistry, Nanoscale, 9 (43), 16900-16907.
283	Ma, W., Higaki, Y. and Takahara, A. (2017), Superamphiphobic Coatings from Combination of a Biomimetic Catechol-Bearing Fluoropolymer and Halloysite Nanotubes, Advanced Materials Interfaces, 1700907.
284	Razavi, S.M.R., Oh, J., Sett, S., Feng, L., Yan, X., Hoque, M.J., Liu, A., Haasch, R.T., Masoomi, M., Bagheri, R. and Miljkovic, N. (2017), Superhydrophobic Surfaces Made from Naturally Derived Hydrophobic Materials, ACS Sustainable Chemistry and Engineering, 5 (12), 11362-11370.
285	Nozaki, S., Masuda, S., Kamitani, K., Kojio, K., Takahara, A., Kuwamura, G., Hasegawa, D., Moorthi, K., Mita, K. and Yamasaki, S. (2017), Superior Properties of Polyurethane Elastomers Synthesized with Aliphatic Diisocyanate Bearing a Symmetric Structure, Macromolecules, 50 (3), 1008-1015.

286	Itagaki, N., Oda, Y., Hirata, T., Nguyen, H. K., Kawaguchi, D., Matsuno, H. and Tanaka, K. (2018), Surface Characterization and Platelet Adhesion on Thin Hydrogel Films of Poly(vinyl ether), Langmuir, 33 (50), 14332-14339.
287	Wu, KT., Téllez, H., Druce, J., Burriel, M., Yang, F., McComb, D.W., Ishihara, T. and Kilner, J.A., Skinner, S.J. (2017), Surface chemistry and restructuring in thin-film $La_{1N+1}Ni_nO_{3n+1}$ (n = 1, 2 and 3) Ruddlesden-Popper oxides, Journal of Materials Chemistry A, 5 (19), 9003-9013.
288	Hong, L., Nakashima, N., Li, Y., Jia, H. and Yang, C. (2018), Surfactant-Dependent Charge Transfer between Polyoxometalates and Single-Walled Carbon Nanotubes: A Fluorescence Spectroscopic Study, Chemistry - An Asian Journal, 13 (2), 210-216.
289	Zhang, Y., Hirai, T., Ma, W., Higaki, Y., Kojio, K. and Takahara, A. (2018), Synthesis of a Bio-Inspired Catechol/Phosphorylcholine Surface Modifier and Characterization of its Surface Properties, Journal of Polymer Science, Part A: Polymer Chemistry, 56 (1), 38-49.
290	Chaudhary, AL., Dietzel, S., Li, HW., Akiba, E., Bergemann, N., Pistidda, C., Klassen, T. and Dornheim, M. (2017), Synthesis of Mg2FeD6 under low pressure conditions for Mg2FeH6 hydrogen storage studies, International Journal of Hydrogen Energy, 42 (16), 11422-11428.
291	Ikeda, T., Tsuji, T., Takanashi, M., Kurosawa, I., Nakatsukasa, M., Kato, A., Worth, K., White, D. and Roberts, B. (2017), Temporal variation of the shallow subsurface at the Aquistore CO ₂ storage site associated with environmental influences using a continuous and controlled seismic source, Journal of Geophysical Research: Solid Earth, 122 (4), 2859-2872.
292	Tanaka, H., Niste, V.B., Abe, Y. and Sugimura, J. (2017), The Effect of Lubricant Additives on Hydrogen Permeation Under Rolling Contact, Tribology Letters, 65 (3), 94.
293	Harrington, G.F., Cavallaro, A., McComb, D.W., Skinner, S.J. and Kilner, J.A. (2017), The effects of lattice strain, dislocations, and microstructure on the transport properties of YSZ films, Physical Chemistry Chemical Physics, 19 (22), 14319-14336.
294	Nečas, D., Sawae, Y., Fujisawa, T., Nakashima, K., Morita, T., Yamaguchi, T., Vrbka, M., Křupka, I. and Hartl, M. (2017), The Influence of Proteins and Speed on Friction and Adsorption of Metal/UHMWPE Contact Pair, Biotribology, 11, 51-59.
295	Staykov, A., Ferreira-Neto, E.P., Cruz, J.M.Y.S., Ullah, S. and Rodrigues-Filho, U.P. (2017), The stability of titania-silica interface, International Journal of Quantum Chemistry, 118 (4), e25495.
296	Mahyuddin, MH., Shiota, Y., Staykov, A. and Yoshizawa, K. (2017), Theoretical Investigation of Methane Hydroxylation over Isoelectronic [FeO] ⁽²⁺⁾⁻ and [MnO] ⁽⁺⁾⁻ Exchanged Zeolites Activated by N2O, INORGANIC CHEMISTRY, 56 (17), 10370-10380.
297	Otani, N., Kuwabara, A., Ogawa, T., Matsuda, J., Seko, A., Tanaka, I. and Akiba, E. (2017), Theoretical investigation of solid solution states of Ti1–xVxH2, Acta Materialia, 134, 274-282.
298	Nanba, Y., Tsutsumi, T., Ishimoto, T. and Koyama, M. (2017), Theoretical Study of the Hydrogen Absorption Mechanism into a Palladium Nanocube Coated with a Metal-Organic Framework, Journal of Physical Chemistry C, 121 (27), 14611-14617.
299	Danish, M., Ginta, T.L., Habib, K., Carou, D., Rani, A.M.A. and Saha, B.B. (2017), Thermal analysis during turning of AZ31 magnesium alloy under dry and cryogenic conditions, International Journal of Advanced Manufacturing Technology, 91 (5), 2855-2868.
300	Imran, M., Pambudi, N.A. and Farooq, M. (2017), Thermal and hydraulic optimization of plate heat exchanger using multi objective genetic algorithm, Case Studies in Thermal Engineering, 10, 570-578.
301	Selvam, C., Mohan Lal, D. and Harish, S. (2017), Thermal conductivity and specific heat capacity of water–ethylene glycol mixture-based nanofluids with graphene nanoplatelets, Journal of Thermal Analysis and Calorimetry, 129 (2), 947-955.
302	Yamada, Y., Askounis, A., Ikuta, T., Takahashi, K., Takata, Y. and Sefiane, K. (2017), Thermal conductivity of liquid/carbon nanotube core-shell nanocomposites, Journal of Applied Physics, 121, 015104.
303	Kareem, M.W., Habib, K., Ruslan, M.H. and Saha, B.B. (2017), Thermal performance study of a multi-pass solar air heating collector system for drying of Roselle (Hibiscus sabdariffa), Renewable Energy, 113, 281-292.

304	Mieno, H., Kabe, R., Allendorf, M.D. and Adachi, C. (2018), Thermally activated delayed fluorescence of a Zr-based metal-organic framework, Chemical Communications, 54 (6), 631-634.
305	Kim, J.U., Reddy, S.S., Cui, LS., Nomura, H., Hwang, S., Kim, D.H., Nakanotani, H., Jin, S. and Adachi, C. (2017), Thermally activated delayed fluorescence of Bis(9,9-dimethyl-9,10-dihydroacridine) dibenzo[b,d]thiophene 5,5-dioxide derivatives for organic light-emitting diodes, Journal of Luminescence, 190, 485-491.
306	Matsumoto, T., Kubota, M., Matsuoka, S., Ginet, P., Furtado, J. and Barbier, F. (2017), Threshold stress intensity factor for hydrogen-assisted cracking of CR-MO steel used as stationary storage buffer of a hydrogen refueling station, International Journal of Hydrogen Energy, 42 (11), 7422-7428.
307	Sandanayaka, A. S. D., Matsushima, T., Bencheikh, F., Yoshida, K., Inoue, M., Fujihara, T., Goushi, K., Ribierre, J. C. and Adachi, C. (2017), Toward continuous-wave operation of organic semiconductor lasers, Science Advances, 3 (4), e1602570.
308	Ščajev, P., Aleksiejunas, R., Miasojedovas, S., Nargelas, S., Inoue, M., Qin, C., Matsushima, T., Adachi, C. and Juršėnas, S. (2017), Two regimes of carrier diffusion in vapor deposited lead-halide perovskites, The Journal of Physical Chemistry C, 121 (39), 21600-21609.
309	Kim, N., Turner, E.M., Kim, Y., Ida, S., Hagiwara, H., Ishihara, T. and Ertekin, E. (2017), Two-Dimensional TiO ₂ Nanosheets for Photo and Electro-Chemical Oxidation of Water: Predictions of Optimal Dopant Species from First-Principles, Journal of Physical Chemistry C, 121 (35), 19201-19208.
310	Saravanan, P., Selyanchyn, R., Tanaka, H., Fujikawa, S., Lyth, S.M. and Sugimura, J. (2017), Ultra-low friction between polymers and graphene oxide multilayers in nitrogen atmosphere, mediated by stable transfer film formation, Carbon, 122, 395-403.
311	Edalati, K., Uehiro, R., Fujiwara, K., Ikeda, Y., Li, HW., Sauvage, X., Valiev, R.Z., Akiba, E., Tanaka, I. and Horita, Z. (2017), Ultra-severe plastic deformation: Evolution of microstructure, phase transformation and hardness in immiscible magnesium-based systems, Materials Science and Engineering A, 701, 158-166.
312	Ogawa, Y., Matsunaga, H., Yamabe, J., Yoshikawa, M. and Matsuoka, S. (2017), Unified evaluation of hydrogen-induced crack growth in fatigue tests and fracture toughness tests of a carbon steel, International Journal of Fatigue, 103, 223-233.
313	Chu, CW., Higaki, Y., Cheng, CH., Cheng, MH., Chang, CW., Chen, JT. and Takahara, A. (2017), Zwitterionic polymer brush grafting on anodic aluminum oxide membranes by surface-initiated atom transfer radical polymerization, Polymer Chemistry, 8 (15), 2309-2316.
314	Notsuka N., Kabe R., Goushi K. and Adachi C. (2017), Confinement of Long-Lived Triplet Excitons in Organic Semiconducting Host–Guest Systems, Advanced Functional Materials, 27 (40), 1703902.
315	Pramana S.S., Cavallaro A., Li C., Handoko A.D., Chan K.W., Walker R.J., Regoutz A., Herrin J.S., Yeo B.S., Payne D.J., Kilner J.A., Ryan M.P. and Skinner S.J. (2018), Crystal structure and surface characteristics of Sr-doped GdBaCO ₂ O ₆ .: δ double perovskites: Oxygen evolution reaction and conductivity, Journal of Materials Chemistry A, 6 (13), 5335-5345.
316	Kim T. and Christensen K.T. (2018), Flow interactions between streamwise-aligned tandem cylinders in turbulent channel flow, AIAA Journal, 56 (4), 1421-1433.
	A.2. Review Articles
317	Selyanchyn, R. and Fujikawa, S. (2017), Membrane thinning for efficient CO ₂ capture, Science and Technology of Advanced Materials, 18 (1), 816-827.
318	Hagiwara, H., Watanabe, M., Ida, S. and Isumara, T. (2017), Overall Water Splitting on Dye-modified Inorganic Semiconductor Photocatalysts, Journal of the Japan Petroleum Institute, 60 (1), 10-18.
319	Shao, HY., He, LQ., Lin, HJ. and Li, HW. (2017), Progress and Trends in Magnesium-Based Materials for Energy-Storage Research: A Review, ENERGY TECHNOLOGY, 6 (3), 445-458.
	A.3. Proceedings

335	Kitamura, K., Honda, H., Takaki, S., Nishihara, M., Christensen, KT. and Mitani, Y. (2017), Experimental study of two-phase fluid flow in the porous sandstone by P-wave velocity and electrical impedance measurement, Energy Procedia, 114, 4948-4953.
334	Pambudi, NA., Pristiandaru, DL., Basori; Wijayanto, DS., Bugis, H., Wahyudi, BD., Sudibyo, C., Karno, MW., Rahman, N., Sriwardani, N. and Subagsono. (2017), Experimental Investigation of Wind Turbine Using Nozzle-lens at Low Wind Speed Condition, Energy Procedia, 105, 1063-1069.
333	Jige, D., Inoue, N. and Koyama, S. (2017), EVAPORATION HEAT TRANSFER AND PRESSURE DROP OF R32 IN A HORIZONTAL MULTIPORT TUBE WITH MICROFINS, The 5th IIR International Conference on Thermophysical Properties and Transfer Processes of Refrigerants, 1-8.
332	Uda, K., Noda, Z., Sasaki, K. and Hayashi, A. (2017), Electrochemical Characterization of MEAs with Different Pt-loading for the Efficient Use of Pt, ECS Transactions, 80 (8), 789-799.
331	Nagao, A., Dadfarnia, M., Wang, S., Sofronis, P., Nygren, K.E. and Robertson, I.M. (2017), Effect of hydrogen on fatigue-crack growth of a ferritic-pearlitic low carbon steel, American Society of Mechanical Engineers, 6B2017, PVP2017-66273.
330	Yamauchi, M., Watanabe, R., Hata, S., Kitano, S., Sadakiyo, M. and Takeguchi, T. (2017), Direct power charge and discharge using the glycolic acid/oxalic acid redox couple toward carbon-neutral energy circulation, ECS Transactions, 75 (43), 17-21.
329	Matsumoto, S., Nagamine, M., Noda, Z., Matsuda, J., Hayashi, A. and Sasaki, K. (2017), Development of PEFC Alloy Electrocatalysts Supported on SnO2, ECS Transactions, 80 (8), 907-918.
328	Komoday, R., Morita, N., Nakashima, F., Kubota, M. and Sawada, R. (2017), Development of New Measurement Method Applying MEMS Techonology for Relative Slip Range During Fretting Fatigue Test in Hydrogen, International Hydrogen Conference (IHC2016): Materials Perfomance in Hydrogen Environments, (2017), 454-461.
327	Van Pham T., Nguyen D.H. and Banjerdpongchai D. (2017), Design of iterative learning control via alternating direction method of multipliers for building temperature control system, ECTI-CON 2017 - 2017 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, (8096363), 814-817.
326	Kikuchi Y., Matsuda J., Tachikawa Y., Shiratori Y., Taniguchi S. and Sasaki K. (2017), Degradation of SOFCs by various impurities: Impedance spectroscopy and microstructural analysis, ECS Transactions, 78 (1), 2497-2504.
325	Van Pham, T., Nguyen, D.H. and Banjerdpongchai, D. (2017), Decentralized iterative learning control of building temperature control system, Proceedings of 2017 SICE International Symposium on Control Systems, ISCS 2017, 1-7.
324	Ito, K., Terabaru, K., Li, H., Inada, A. and Nakajima, H. (2017), Challenging of Reducing Electrolysis Voltage by Superimposing Boiling on PEMWE-A Thermodynamic Coupling-, ECS Transactions, 80 (8), 1117-1125.
323	Chen, YM., Lin, TN., Liao, MW., Kuo, HY., Yeh, CY., Kao, WX., Yang, SF., Wu, KT. and Ishihara, T. (2017), Applications of the glycine nitrate combustion method for powder synthesis on the LSGM-based electrolyte-supported solid oxide fuel cells, ECS Transactions, 78 (1), 773-781.
322	Ishihara, T., Bahrain, A.M.K. and Wu, K.T. (2017), Anodic performance of La _{0.5} Sr _{0.5} Mn _{0.9} Al _{0.1} O ₃ perovskite oxide for solid oxide fuel cells using dry C3H8 fuel, ECS Transactions, 78 (1), 2511-2518.
321	Futamura S., Tachikawa Y., Matsuda J., Lyth S.M., Shiratori Y., Taniguchi S. and Sasaki K. (2017), Alternative SOFC anode materials with ion- and electron-conducting backbones for higher fuel utilization, ECS Transactions, 78 (1), 1179-1187.
320	Nguyen, DH., Tran, HN., Narikiyo, T. and Kawanishi, M. (2017), A Lyapunov Approach for Transient Stability Analysis of Droop Inverter-based Mesh Microgrids using Line-based Model, 2017 IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (CCTA 2017), 1655-1660.

336	Miyazaki, T., Jribi, S., Saha, B.B., Koyama, S., Kil, HS., Miyawaki, J. Yoon, SH. (2017), Feasibility of adsorption refrigeration systems with carbon dioxide as refrigerant, The First Asian Conference on Thermal Sciences, ACTS 2017, 1-4.
337	Pambudi, N.A., Itaoka, K., Yamakawa, N. and Kurosawa, A. (2017), Future Japan Power Generation Sector by Introducing Hydrogen plant with 80% CO ₂ emission reduction target : A preliminary analysis, IEEE The 4th International Conference on Sustainable Energy Engineering and Application (ICSEEA 2016), 7873569, 66-69.
338	Tsuji T., Ikeda T. and Jiang F. (2017), Hydrologic and Elastic Properties of CO ₂ Injected Rock at Various Reservoir Conditions: Insights into Quantitative Monitoring of Injected CO ₂ , Energy Procedia, 114, 4047-4055.
339	Pambudi, N.A., Itaoka, K., Kurosawa, A. and Yamakawa, N. (2017), Impact of Hydrogen fuel for CO ₂ Emission Reduction in Power Generation Sector in Japan, Energy Procedia, 105, 3075-3082.
340	Pambudi, N.A., Itaoka, K., Chapman, A., Kurosawa, A. and Kato, E. (2017), Industrial Carbon Capture Storage (CSS) Model Using Times-Japan Framework, Energy Procedia, 142, 2525-2533.
341	Singh S., Jiang F. and Tsuji T. (2017), Influence of Slip Flow at Fluid-solid Interface upon Permeability of Natural Rock, Energy Procedia, 114, 3572-3577.
342	Ochiai, T., Nakajima, H., Karimata, T., Kitahara, T., Ito, K. and Ogura, Y. (2017), In-situ analysis of the in-plane current distribution difference between electrolyte-supported and anode-supported planar solid oxide fuel cells by segmented electrodes, ECS Transactions, 78 (1), 2203-2209.
343	Ochiai, T., Nakajima, H., Karimata, T., Kitahara, T., Ito, K., Ogura, Y. and Shimano, J. (2017), In-situ analysis of the in-plane current distributions in an electrolyte-supported planar solid oxide fuel cell by segmented electrodes, ECS Transactions, 75 (52), 91-98.
344	Pham HC., Taniguchi S., Inoue Y., Chou JT., Matsuda J. and Sasaki K. (2017), Investigation of Fe-Cr-Al alloy for metal supported SOFC, ECS Transactions, 78 (1), 2069-2075.
345	Tu, D. and Xu, CN. (2017), Lifetime-based measurement of mechanical load using mechanical-quenching of CaZnOS:Cu, Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/Journal of the Ceramic Society of Japan, 125 (6), 438-440.
346	Mahmood, M.H., Sultan, M., Miyazaki, T. and Koyama, S. (2017), Low cost technologies for agricultural product storage: Prospective and Challenges, The First Asian Conference on Thermal Sciences, ACTS 2017, 1-5.
347	Honda, H., Kitamura, K., Takaki, S., Ikemi, H. and Mitani, Y (2017), Measurement of electrical impedance and P-wave velocity of a low permeable sandstone core during the displacement of saturated brine by CO ₂ injection, Energy Procedia, 114, 4879-4883.
348	Nagao, A., Wang, S., Nygren, K.E., Dadfarnia, M., Sofronis, P. and Robertson, I.M. (2017), Microstructural change of low-alloy steels caused by hydrogen-induced fatigue-crack growth, International Hydrogen Conference (IHC 2016): Materials Perfomance in Hydrogen Environments, 228-234.
349	Dadfarnia, M., Nagao, A., Somerday, B.P., Shembri, P.E., Foulk III, J.W., Nibur, K.A., Balch, D.K., Ritchie, R.O. and Sofronis, P. (2017), Modeling hydrogen-induced fracture and crack propagation in high strength steels, International Hydrogen Conference (IHC 2016): Materials Perfomance in Hydrogen Environments, 572-580.
350	Mitra, S., Thu, K., Saha, B.B. and Dutta, P. (2017), Modeling the Effect of Heat Source Temperature on the Performance of Two-stage Air Cooled Silica Gel + Water Adsorption System, Energy Procedia, 105, 2010-2015.
351	Liu, X., Miao, Y., Chen, WY., Wu, Y., Li, M. and Stubbins, J.F. (2017), Neutron and ion irradiation studies on advanced steels using the nuclear science user facilities, Transactions of the American Nuclear Society, 116, 369-370.
352	Nagamine, M., Noda, Z., Matsumoto, S., Matsuda, J., Hayashi, A. and Sasaki K. (2017), Photochemical Preparation of Pt Electrocatalysts on SnO ₂ Support for PEFCs, ECS Transactions, 80 (8), 773-780.

353	Fujikawa, S., Ariyoshi, M., Shigyo, E., Fukakusa, C., Roman, S. and Kunitake, T. (2017), Preferential CO ₂ separation over nitrogen by a free-standing and nanometer-thick membrane, Energy Proceedia, 114, 608-612
354	Matsuzaki, Y., Tachikawa, Y., Somekawa, T., Sato, K., Kawabata, Y., Sugahara, M., Matsumoto, H., Taniguchi, S. and Sasaki, K. (2017), Relationship between electrochemical properties and electrolyte partial conductivities of proton-conducting ceramic fuel cells, ECS Transactions, 78 (1), 441-450.
355	Ikeda T. and Tsuji T. (2017), Robust Subsurface Monitoring Using a Continuous and Controlled Seismic Source, Energy Procedia, 114, 3956-3960.
356	Mahmood, M.H., Sultan, M., Miyazaki, T. and Koyama, S. (2017), Scope of nano/micro polymeric materials for farm air-conditioning applications, The 6th International Symposium on Micro and Nano Technology, 1-11.
357	Miyazaki, T. and Koyama, S. (2017), SIMULATION OF THERMAL COMPRESSION WITH ACTIVATED CARBON-ETHANOL PAIR, International Institution of Refrigeration, IFD_REFDOC_0021509.
358	Nakazato, Y., Kawachino,D., Noda, Z., Matsuda, J., Hayashi, A. and Sasaki, K. (2017), SnO ₂ -Supported Electrocatalysts on Various Conductive Fillers for PEFCs, ECS Transactions, 80 (8), 897-906.
359	Ishihara, T. (2017), Solid Oxide Reversible Cells (SORCs) Using LaGaO3-Based Oxide Electrolyte and Oxide Fuel Electrode, AIP Conference Proceedings, 1877, 02001-1-020001-6.
360	Miyazaki, T., Miyawaki, J., Ohba, T., Yoon, SH., Saha, B.B. and Koyama, S. (2017), Study toward high-performance thermally driven air-conditioning systems, AIP Conference Proceedings, 1788, 020002.
361	Cubero-Sesin, J.M., Gonzalez-Hernandez, J.E., Ulate-Kolitsky, E., Edalati, K. and Horita, Z. (2017), Superplasticity of nanostructured Ti-6AI-7Nb alloy with equiaxed and lamellar initial microstructures processed by High-Pressure Torsion, IOP Conference Series: Materials Science and Engineering, 194 (1), 012041.
362	Matsuzono, T., Kondou, C., Higashi, Y., and Koyama, S. (2017), Surface Tension Measurements of Low GWP Refrigerants, Proceedings of 5th IIR International Conference on Thermophysical Properties and Transfer Processes of Refrigerants, (71), 1-8.
363	Matsuda J., Kanae S., Kawabata T., Chou JT., Inoue Y., Taniguchi S. and Sasaki K. (2017), TEM and ETEM study of SrZrO ₃ formation at LSCF/GDC/YSZ interfaces, ECS Transactions, 78 (1), 993-1001.
364	Kubota, M., Komoda, R. and Furtado, Jader. (2017), The Effects of Oxygen Impurities on Fretting Fatigue of Austenitic Stainless Steel I Hydrogen Gas, International Hydrogen Conference (IHC 2016): Materials Perfomance in Hydrogen Environments, 62-69.
365	Nygren, K., Nagao, A., Sofronis, P. and Robertson I.M. (2017), The influence of high internal hydrogen content on the evolved microstructure during fatigue-crack growth in 316L stainless steel, International Hydrogen Conference (IHC 2016): Materials Perfomance in Hydrogen Environments, 270-276.
366	Kawachino, D., Noda, Z., Matsuda, J., Hayashi, A. and Sasaki, K. (2017), Theeti-Porous-S-Supported Pt Electrocatalysts for PEFCs, ECS Transactions, 114, 122-130.
367	Matsue, K., & Tomoeda, K. (2017), Toward a mathematical analysis for a model of suspension flowing down an inclined plane, Proceedings Of Equadiff 2017 Conference, 349-358.
368	Fujio, Y., Xu, C.N., Sakata, Y., Yoshida, A., Ueno, N. and Terasaki, N. (2017), Visualization of relative strain distribution for carbon fiber reinforced plastic plate by mechanoluminescent technique, ECS Transactions, 75 (45), 23-28.
	A.4. Other English Articles
369	Li, QY., Takahashi, K. and Zhang, X. (2017), Comment on "divergent and ultrahigh thermal conductivity in millimeter-long nanotubes", Physical Review Letters, 119, 179601.
370	Takahara, A. and Higaki, Y. (2017), Design and Physicochemical Characterization of Novel Organic-Inorganic Hybrids from Natural Aluminosilicate Nanotubes, FUNCTIONAL POLYMER COMPOSITES WITH NANOCLAYS, 2017-January (22), 131-156.
371	Saha, B.B. and Thu, K. (2017), Editorial, Evergreen, 4 (1), ii-iii.

372	Weisensee P.B., Wang Y., Hongliang Q., Schultz D., King W.P. and Miljkovic N. (2017), Erratum: "Condensate droplet size distribution on lubricant-infused surfaces" (International Journal of Heat and Mass Transfer (2017) 109 (187–199) (S0017931016334925) (10.1016/j.ijheatmasstransfer.2017.01.119)), International Journal of Heat and Mass Transfer, 112, 366.
	A.5. Articles Written in other than English (In Japanese)
373	Masuda T. and Horita Z. (2017), Development of ultra high strength (1GPa) aluminum alloy using severe plastic deformation under high pressure, Keikinzoku/Journal of Japan Institute of Light Metals, 67 (10), 519-520.
374	Araki, S., Fujii, K., Akama, D., Tsuchiyama, T., Takaki, S., Ohmura, T. and Takahashi, J. (2017), Effect of low temperature aging on hall-petch coefficient in ferritic steels containing a small amount of carbon and nitrogen, Tetsu-to-Hagané, 103 (8), 491-497.
375	Hashimoto, S., Tsuchiyama, T. and Takaki, S. (2017), Effect of morphology of dual-phase structure on inhomogeneous plastic deformation and ductile fracture in Ti-4%Cr Alloy, Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 103 (11), 636-645.
376	Akama, D., Tsuchiyama, T. and Takaki, S. (2017), Effect of Ni on the dislocation strengthening in ferritic iron, Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 103 (5), 230-235.
377	Hashimoto, S., Komata, H. and Matsunaga, H. (2017), Effect of small defect on the flaking strength of rolling bearings (Part 2: Evaluation of the flaking strength of rolling bearing having a small drilled hole based on stress intensity factor), Transactions of the JSME, 83 (852), 16-00584.
378	Akama, D., Tsuchiyama, T. and Takaki, S. (2017), Evaluation of Dislocation Density in Cold-Worked Iron as Measured Via X-Ray Diffractometry, Zairyo/Journal of the Society of Materials Science, 66 (7), 522-528.
379	Masuda, T. and Horita, Z. (2017), Fabrication of high-strength and high-ductility laminated A2024 aluminum alloy/aluminum composite by severe plastic deformation under high pressure, Keikinzoku/Journal of Japan Institute of Light Metals, 67 (5), 179-185.
380	Nakajima, K., Ito, M., Liang, X. and Matsue, K. (2017), Present and Future of Nanomechanics by Atomic Force Microscope, Hyomen Kagaku, 38 (10), 520-525.
381	Takaki, S. and Tsuchiyama, T. (2018), Theoretical discussion of dislocation strengthening in cold rolled iron, Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 104 (2), 117-120.

Invited Lectures, Plenary Addresses (etc.) at International Conferences and 2. **International Research Meetings**

- List up to 10 main presentations during FY2017 in order from most recent.

- For each, write the lecturer/presenter's name, presentation title, conference name and date(s)

- 1) Takeshi Tsuji, CO₂ behavior characterization from digital rock physics and innovative monitoring system, International CCS/CCUS Seminar, Jakarta, Indonesia, Feb. 7, 2018 (Invited).
- 2) Yasuyuki Takata, Effect of Wettability and Dissolved Air on Early Onset of Boiling, 3rd International Symposium of Fluids and Thermal Engineering, Ningbo, China, Dec. 17-19, 2017 (Keynote).
- 3) Elif Ertekin, Towards a Framework for Modeling Ionic Diffusivity in Disordered Alloys: Application to Mixed Conducting Perovskites, Symposium on Design, Control and Advanced Characterization of Functional Defects in Materials — Theory and Experiment, Materials Research Society Fall Meeting, Boston, USA, Nov. 26-Dec. 1, 2017 (Invited).
- 4) Paul Kenis, Electrochemical CO₂ Conversion: Status and Remaining Challenges, US National Academy of Sciences / UK Royal Society Sackler Forum: "Dealing with Carbon Dioxide at Scale", Buckinghamshire, UK, Oct. 17-18, 2017 (Invited).
- 5) Nguyen Dinh Hoa, A novel optimization model for integrating carbon constraint with demand response and real-time pricing, Forum Math for Industry 2017 (FMfI 2017), Hawaii, USA, Oct. 1 (Invited).
- 6) Joichi Sugimura, Tribology and Materials for Hydrogen Energy Society, 6th World Tribology Congress, Beijing, China, Sep. 21, 2017 (Plenary).
- 7) Nenad Milikovic, Towards Durable Hydrophobicity and Omniphobicity, ASME International Conference on Nanochannels, Microchannels and Minichannels, Cambridge, USA, Aug. 27-31, 2017 (Keynote).
- Benny D. Freeman, "Ion Sorption, Diffusion and Transport in Charged Polymer Membranes", EMS Giulio 8) C. Sarti Honorary Session, 2017 International Congress on Membranes and Membrane Processes (ICOM 2017), San Francisco, USA, Aug. 1, 2017 (Invited).
- 9) Miho Yamauchi, Oxide catalysts for electro-reduction of carboxylic acid toward efficient power storage, International Symposium on Pure & Applied Chemistry (ISPAC 2017), Ho Chi Minh, Vietnam, Jun. 8, 2017 (Invited).
- 10) John Kilner, Ionic and Mixed Conduction Phenomena in Oxides and Their Applications in Devices, ICE 2017 8th International Conference on Electroceramics, Nagoya, Japan, May 28-31, 2017 (Plenary).

3. Major Awards

- List up to 10 main awards received during FY2017 in order from the most recent.

For each, write the recipient's name, name of award, and year issued.
In case of multiple recipients, underline those affiliated with the center.

- 1) Kaveh Edalati, Scientist Medal for Advanced Energy Materials and Technology, International Association of Advanced Materials, 2018.
- 2) Chhun, Chanmaly, Jia, Jihui, Arata, Kioka, Tsuji, Takeshi, The Best Oral Presentation Award, 137th The Society of Exploration Geophysicists of Japan conference, 2017.
- 3) Nicola H. Perry, Award for Encouragement of Research, International Union of Materials Research Societies (IUMRS), 2017.
- 4) John Kilner, Imperial College Medal, Imperial College London, 2017.
- 5) Kathryn Huff, The 2017 Mary Jane Oestmann Professional Women's Achievement Award, The American Nuclear Society, 2017.
- 6) Tomoyasu Hirai, Young Scientist Award of the Society of Polymer Science, The Society of Polymer Science, Japan, 2017

- 7) Arnaud Macadre, Award for Promising Researchers, The Society of Materials Science, Japan, 2017.
- 8) Tomohiro Shiraki, CSJ Presentation Award 2017 for Industries, The Chemical Society of Japan (CSJ), 2017.
- 9) Nenad Miljkovic, Distinguished Visiting Fellow, United Kingdom Royal Society of Engineering, 2017.
- 10) Ken T. Christensen, Fellow, American Association for the Advancement of Science (AAAS), 2017.

Appendix 2

Appendix 2 FY 2017 List of Principal Investigators

NOTE:

• Underline names of principal investigators who belong to an overseas research institution. Place an asterisk (*) by names of investigators considered to be ranked among world's top researchers.

[•] In case of researchers not listed in the latest report, attach "Biographical Sketch of a New Principal Investigator".

		<results at="" end="" fy<="" of="" th="" the=""><th>2017></th><th></th><th colspan="3">Principal Investigators Total: 25</th></results>	2017>		Principal Investigators Total: 25		
Name	Age	Affiliation (Position title, department, organization)	Academic degree specialty	Effort (%)*	Starting date of project participation	Status of project participation (Describe in concrete terms)	Contributions by PIs from overseas research institutions
Center director <u>Petros Sofronis*</u>	60	Prof., International Institute for Carbon-Neutral Energy Research, Kyushu University	Ph.D., Micromechanics of materials, Environmental degradation of materials	90%	2010, Dec. 1st	 Directs and administers the Institute Travels to Kyushu University to participate in events and engage with researchers (49.6% time) Promotes I²CNER's interests worldwide to various universities, government agencies, laboratories, and industries on a daily basis Intensive trans-Pacific electronic communication via e-mail, Skype, videoconferencing, etc. 	Manages and directs I ² CNER's operations
Tatsumi Ishihara*	56	Prof., International Institute for Carbon-Neutral Energy Research, Kyushu University	Dr. of Engr., Catalyst and solid state electrochemistry	100%	2010, Dec. 1st	 Located at I²CNER Executes duties of Associate Director Lead PI of Molecular Photoconversion Devices Division 	
Chihaya Adachi*	54	Prof., Department of Applied Chemistry, Kyushu University	Dr. of Engr., Materials science and device physics	80%	2010, Dec. 1st	 Located at I²CNER Leads research activities of his team 	

Atsushi Takahara*	62	Prof., Institute for Materials Chemistry and Engineering, Kyushu University	Dr. of Engr., Surface and Interface Characterization	80%	2010, Dec. 1st	 Located at I²CNER Leads research activities of his team 	
Seiji Ogo*	54	Prof., International Institute for Carbon-Neutral Energy Research, Kyushu University	Dr. of Science, Green Chemistry	100%	2010, Dec. 1st	 Located at I²CNER Lead PI of Catalytic Materials Transformations Division 	
Zenji Horita*	64	Prof., International Institute for Carbon-Neutral Energy Research, Kyushu University	Ph.D., Dr. of Engr., Materials Science	100%	2010, Dec. 1st	 Located at I²CNER Leads research activities of his team 	
Kazunari Sasaki* (for engineering next generation fuel cells)	53	Prof., International Institute for Carbon-Neutral Energy Research, Kyushu University	Dr. of Science and technology, Fuel cell materials, Inorganic materials	100%	2010, Dec. 1st	 Located at I²CNER Leads research activities of his team 	
<u>Harry L. Tuller*</u>	72	Prof., Department of Materials Science and Engineering, Massachusetts Institute of Technology, USA	Engr. Sc. D., Functional electroceramic materials	40%	2010, Dec. 1st	 Primarily located at partner institution Leads research activities of his team Visited I²CNER for two weeks to participate in events and work on collaborative research projects Participates in research discussions via internet 	Hosted Assistant Professor Nicola Perry and Dr. Dino Klotz from I ² CNER at MIT for multiple months

<u>John A. Kilner*</u>	71	Prof., Department of Materials, Imperial College, London, UK	Ph.D., Materials for solid oxide fuel cells and electrolysers	55%	2010, Dec. 1st	 Primarily located at partner institution Leads research activities of his team Visited I²CNER for eight weeks to participate in events and work on collaborative projects Participates in research discussions via internet 	Hosted Dr. Vincent Thoreton from I ² CNER at the Imperial College London twice in FY2017: once for 2 weeks and another for three weeks
Joichi Sugimura*	60	Prof., International Institute for Carbon-Neutral Energy Research, Kyushu University	Dr. of Engr., Tribology and Machine Design	100%	2010, Dec. 1st	 Located at I²CNER Leads research activities of his team 	
Yasuyuki Takata*	61	Prof., International Institute for Carbon-Neutral Energy Research, Kyushu University	Dr. of Engr., Thermal Engineering	100%	2010, Dec. 1st	 Located at I²CNER Executes duties of Associate Director Lead PI of Thermal Sciences and Engineering Division 	
<u>Xing Zhang*</u>	56	Prof., Department of Engineering Mechanics, Tsinghua University, China	Ph.D., Thermal Science	20%	2010, Dec. 1st	 Primarily located at partner institution Leads research activities of his team Visited I²CNER for four weeks to participate in events and work on collaborative projects Participates in research discussions via internet 	
<u>Brian P.</u> Somerday*	49	Dr., Southwest Research Institute, USA	Ph.D., Materials Science and Engineering	20%	2010, Dec. 1st	 Primarily located at partner institution Lead PI of Hydrogen Materials Compatibility Division Visited I²CNER for two weeks to participate in events and work on collaborative projects Participates in meetings/events via internet and videoconferences 	Hosted a group of researchers from I ² CNER at the Southwest Research Institute for the Hydrogen Materials Compatibility Division retreat

Setsuo Takaki*	65	Prof., International Institute for Carbon-Neutral Energy Research, Kyushu University	Dr. of Engr.	100%	2011, Apr. 1st	 Located at I²CNER Leads research activities of his team 	
<u>Reiner</u> <u>Kirchheim*</u>	74	Prof., The Institut für Metallphysik, University of Göttingen, Germany	Ph.D., Hydrogen in Metals, Thermodynamics of alloys, Interstitial solution and diffusion in glasses	40%	2011, Apr. 1st	 Primarily located at partner institution Leads research activities of his team Visited I²CNER for one week to participate in events and work on collaborative projects Participates in research discussions via internet 	
Miho Yamauchi*	44	Prof., International Institute for Carbon-Neutral Energy Research, Kyushu University	Dr. of Science, Chemistry	100%	2012, Jan. 1st	 Located at I²CNER Leads research activities of her team 	
Ken Sakai*	56	Prof., Department of Chemistry Faculty of Sciences, Kyushu University	Dr. of Science, Inorganic Chemistry	90%	2012, Jan. 16th	 Located at I²CNER Leads research activities of his team 	
lan Robertson*	60	Prof., Dean of Engineering, University of Wisconsin- Madison, USA	Ph.D., Metallurgy	15%	2012, April. 1st	 Primarily located at partner institution Participates in research/events as Chief Science Advisor to the Director Participates in research discussions via internet 	

<u>Andrew A.</u> <u>Gewirth*</u>	58	Prof., Department of Chemistry, University of Illinois at Urbana Champaign, USA	Ph.D., Chemistry	25%	2012, April. 1st	 Primarily located at partner institution Leads research activities of his team Serves as a member of the Illinois Satellite Advisory Committee and IPRC Visited I²CNER for two weeks to participate in events and work on collaborative projects Participates in research discussions via internet 	
<u>Kenneth T.</u> Christensen*	44	Prof., Department Chair, Aerospace and Mechanical Engineering, University of Notre Dame, USA	Ph.D., Theoretical and Applied Mechanics specializing in experimental fluid mechanics	25%	2012, April. 1st	 Primarily located at partner institution Leads research activities of his team Serves as a member of the Illinois Satellite Advisory Committee and IPRC Participates in research discussions via internet 	
Shigenori Fujikawa (Associate Professor)	47	Associate Prof., International Institute for Carbon-Neutral Energy Research, Kyushu University	Dr. of Engr., Nanoscience and engineering	100%	2013, June. 1st	 Located at I²CNER Lead PI of CO₂ Capture and Utilization Division 	
Takeshi Tsuji*	38	Prof., International Institute for Carbon-Neutral Energy Research, Kyushu University	Dr. of Science, Earth and Planetary Science, Resource engineering, Space exploration	100%	2013, June. 1st	 Located at I²CNER Lead PI of CO₂ Storage Division 	

Hiroshige Matsumoto*	51	Prof., International Institute for Carbon-Neutral Energy Research, Kyushu University	Dr. of Engr.	100%	2010, Dec. 1st	 Located at I²CNER Lead PI of Electrochemical Energy Conversion Division 	
Bidyut B. Saha*	52	Prof., International Institute for Carbon-Neutral Energy Research, Kyushu University	Dr. of Engr.	100%** (**revised in the final version)	2010, Dec. 1st	 Located at I²CNER Leads research activities of his team 	
<u>Thomas Lippert*</u>	55	Prof., Department of Chemistry and Applied Biosciences, Laboratory of Inorganic Chemistry, Swiss Federal Institute of Technology Zurich, and Paul Scherrer Institut, Thin Films & Interfaces Group, Villigen-PSI, Switzerland	Dr. of Science, Physical Chemistry	25%	2016, Aug. 1st	 Primarily located at partner institution Leads research activities of his team Visited I²CNER for three weeks to participate in events and work on collaborative projects Participates in research discussions via internet 	Hosted Dr. Kulbir Ghuman from I ² CNER at PSI for multiple months

*Percentage of time that the principal Investigator will devote to his/her work for the center vis-à-vis his/her total working hours (total time for whole working activities including education, medical services, and others as well as research).

Researchers unable to participate in project in FY 2017

Name	Affiliation (Position title, department, organization)	Starting date of project participation	Reasons	Measures taken
Naotoshi Nakashima	Research Professor, International Institute for Carbon-Neutral Energy Research, Kyushu University	2010, Dec. 1st	Retirement from the PI position as of March 31, 2017	Appointment changed to WPI Professor
Etsuo Akiba	Research Professor, International Research Center for Hydrogen Energy, Kyushu University	2010, Dec. 1st	Retirement from the PI position as of March 31, 2017	Appointment changed to WPI Professor

Appendix 3-1 FY 2017 Records of Center Activities

Researchers and center staffs, satellites, partner institutions 1-1. Number of researchers in the "core" established within the host institution Regarding the number of researchers at the Center, please fill in the table in Appendix 3-1a.

Special mention

Enter matters warranting special mention, such as concrete plans for achieving the Center's goals, established schedules for employing main researchers, particularly principal investigators.
As background to how the Center is working on the global circulation of world's best brains, give good examples, if any, of how career paths are being established for the Center's researchers; that is, from which top-world research institutions do researchers come to the Center and to which research institutions do the Center's researchers go, and how long are their stays at those institutions. institutions.

Researcher (Nationality)	Position at I ² CNER	Affiliated with I ² CNER for:	Affiliation before I ² CNER	Affiliation after I ² CNER
Stephen Lyth (British)	Asst. Prof. (until March 31, 2015), Assoc. Prof.	6 years and 4 months	Tokyo Institute of Technology, Japan	Associate Professor, Kyushu University, Japan (since October 1, 2017)
Arnaud Macadre (French)	Postdoc	6 years	Kyushu University, Japan	Associate Professor, Yamaguchi University, Japan (beginning April 1, 2018)
Nicola Perry (British/USA)	Postdoc (until August 15, 2014) Asst. Prof.	5 years and 4 months	Northwestern University, USA	Assistant Professor, University of Illinois at Urbana-Champaign, USA (since January 1, 2018)
Nga Thi Thanh Nguyen (Vietnamese)	Postdoc	3 years	Kyushu University, Japan (Ph.D. Student)	TBD (Appointment not renewed after March 31, 2018)
Yuki Terayama (Japanese)	Postdoc	2 years and 11 months	Asahi Intecc Co., Japan	Postdoc, Kyushu University, Japan (beginning April 1, 2018)
Shiwani Singh (Indian)	Postdoc	1 year and 11 months	Jawaharlal Nehru Centre for Advanced Scientific Research, India	Research Fellow, University of Warwick, UK (since January 1, 2018)
Pambudi Nugroho Agung (Indonesian)	Postdoc	1 year and 7 months	Sebelas Maret University, Indonesia	Assistant Professor, Sebelas Maret University, Indonesia (since November 1, 2017)
Yu Sun (Chinese)	Postdoc	1 year and 6 months	Hangyang University, South Korea	Assistant Professor, Hokkaido University, Japan (beginning April 1, 2018)
Tomohiro Tsugawa (Japanese)	Postdoc	1 year and 5 months	Kyushu University, Japan	Tanaka Kikinzoku Kogyo K.K, Japan (beginning April 1, 2018)
Sourav Mitra (Indian)	Postdoc	1 year and 4 months	Indian Institute of Science Bangalore, India (Ph.D. Student)	Postdoc, Indian Institute of Technology Kharagpur, India (since November 1, 2017)
Jihui Jia (Chinese)	Postdoc	1 year and 3 months	Kyushu University, Japan	Assistant Professor, China University of Petroleum, China (since September 1, 2017)
Thomas Bayer (German)	Postdoc	1 year and 2 months	Kyushu University, Japan	Yanmar CO. Ltd., Japan (since February 1, 2018)

<FY2017 (April 1, 2017~March 31, 2018)>

Patcharida Chauwatat (Thai)	Postdoc	1 year and 2 months	Kyoto University, Japan (Ph.D. Student)	TBD (Resigned from I ² CNER as of May 31, 2017)
Jun Yang (Chinese)	Postdoc	1 year and 2 months	Kyushu University, Japan	Research Professor, Ningbo Institute of Industrial Technology, China (since August 1, 2017)
Fumiyuki Toshimitsu (Japanese)	Postdoc	1 year	Kyushu University, Japan	Postdoc, Kyushu University, Japan (beginning April 1, 2018)
Kosem Nuttavut (Thai)	Postdoc	1 year	Kyushu University, Japan	(Currently at I ² CNER)
Ryosuke Komoda (Japanese)	Postdoc	1 year	Kyushu University, Japan (Ph.D. Student)	(Currently at I ² CNER)
Yi-Hsuan Lee (Taiwanese)	Postdoc	11 months	National Central University, Taiwan	Postdoc, Academia Sinica, Taiwan (beginning April 1, 2018)
Takashi Fukushima (Japanese)	Postdoc	11 months	iCeMs, Kyoto University, Japan	(Currently at I ² CNER)
Junfang Cheng (Chinese)	Postdoc	10 months	Huazhong University of Science and Technology, China (Ph.D. Student)	(Currently at I ² CNER)
Dino Klotz (German)	Postdoc	10 months	Karlsruhe Institute of Technology, Germany	(Currently at I ² CNER)
Hackho Kim (South Korean)	Assoc. Prof.	7 months	Kyushu University, Japan	(Currently at I ² CNER)
Wei Ma (Chinese)	Postdoc	6 months	Kyushu University, Japan	(Currently at I ² CNER)
Youngsung Lee (Chinese)	Postdoc	6 months	Kyushu University, Japan	(Currently at I ² CNER)
Ganesan Pandian (Indian)	Postdoc	6 months	Daegu Gyeongbuk Institute of Science and Technology, South Korea	(Currently at I ² CNER)
Yukina Takahashi (Japanese)	Assoc. Prof.	6 months	Kyushu University, Japan	(Currently at I ² CNER)
Aline Fluri (Swiss)	Postdoc	4 months	Kyushu University, Japan	Postdoc, Kyushu University, Japan (beginning April 1, 2018)
Zonghao Shen (Chinese)	Postdoc	3 months	Kyushu University, Japan	Postdoc, Kyushu University, Japan (since March 1, 2018)
Sijun Luo (Chinese)	Postdoc	3 months	Tulane University, USA (Ph.D. Student)	(Currently at I ² CNER)
Gabseok Seo (South Korean)	Postdoc	3 months	Sungkyunkwan University, South Korea	(Currently at I ² CNER)
Miho Isegawa (Japanese)	Asst. Prof.	2 months	Fukui Institute for Fundamental Chemistry, Japan	(Currently at I ² CNER)
Minkyu Son (South Korean)	Asst. Prof.	1 month	Swiss Federal Laboratories for Materials Science and Technology (EMPA), Switzerland	(Currently at I ² CNER)
Hadi Farabi Asl (Iranian)	Postdoc	1 month	Akita University, Japan	(Currently at I ² CNER)

- 1-2. Satellites and partner institutions
 List the satellite and partner institutions in the table below.
 Indicate newly added and deleted institutions in the "Notes" column.
 If satellite institutions have been established, describe by satellite the Center's achievements in coauthored papers and researcher exchanges in Appendix 4.

<Satellite institution: 1 institution>

Institution name	Principal Investigator(s), if any	Notes
University of Illinois at Urbana-	Andrew Gewirth	
Champaign (UIUC), USA		

<Partner institutions: 23 institutions>

Banding Institute of Technology, Indonesia Indonesia California Air Resources Board (CARB), USA Indonesia Colorado School of Mines, USA Department of Energy (Office of Energy Efficiency and Renewable Energy), USA Indonesia Heimholtz Institute Forschungszentrum Juelich, Germany Indonesia Imperial College London, UK John Kliner Massachusetts Institute of Technology, USA Harry Tuller Norwegian University of Science and Technology (NTNU), Norway Thomas Lippert Southwest Research Institute, USA Brian Somerday University of Bergen, Norway Indiversity of California, Berkeley, University of Oxtor Dame, USA, Kenneth Christensen Intersity of Notre Dame, USA, UNiversity of Texas at Austin, USA University of Texas at Austin, USA Iniversity of Thessang, Greece Iniversity of Wisconsin-Madison, Iso <th>Institution name</th> <th>Principal Investigator(s), if any</th> <th>Notes</th>	Institution name	Principal Investigator(s), if any	Notes
Indonesia California Air Resources Board (CARB), USA Colorado School of Mines, USA Department of Energy (Office of Energy Efficiency and Renewable Energy), USA Helmholtz Institute Forschungszentrum Juelich, Germany Imperial College London, UK John Kilner Massachusetts Institute of Technology, USA Norwegian University of Science and Technology (NTNU), Norway Paul Scherrer Institute (PSI), Switzerland Southwest Research Institute, USA University of California, Berkeley, USA University of California, Berkeley, USA University of California, Berkeley, USA University of California, Berkeley, USA University of California, Irvine (National Fuel Cell Research Center), USA University of California, Irvine (National Fuel Cell Research Center), USA University of Gottingen, Germany Elener Kirchheim University of South Wales, Australia University of Notre Dame, USA, Kenneth Christensen University of Texas at Austin, USA University of Texas at Austin, USA	Banding Institute of Technology,		
California Air Resources Board (CARB), USA Colorado School of Mines, USA Department of Energy (Office of Energy), USA Helmholtz Institute Forschungszentrum Juelich, Germany Imperial College London, UK John Kilner Massachusetts Institute of Technology, USA Norwegian University of Science and Technology (VINU), Norway Paul Scherrer Institute, USA Southwest Research Institute, USA University of Bergen, Norway University of California, Berkeley, USA University of California, Irvine (National Fuel Cell Research Center), USA University of California, Irvine (National Fuel Cell Research Center), USA University of South Wales, Australia University of Notre Dame, USA, University of Texas at Austin, USA University of Wisconsin-Madison, ISA	Indonesia		
(CARB), USA	California Air Resources Board		
Colorado School of Mines, USA Department of Energy (Office of Energy Efficiency and Renewable Energy), USA Helmholtz Institute Forschungszentrum Juelich, Germany Imperial College London, UK John Kilner Massachusetts Institute of Hechnology, USA Norwegian University of Science and Technology (NTNU), Norway Paul Scherrer Institute (PSI), Switzerland Southwest Research Institute, University of Bergen, Norway University of Science and Technology (MTNU), Norway Paul Scherrer Institute (PSI), Switzerland Southwest Research Institute, University China Brian Somerday USA University of Bergen, Norway University of California, Berkeley, USA University of California, Irvine (National Fuel Cell Research Center), USA University of Gottingen, Germany University of Kottingen, Germany University of New South Wales, Australia University of New South Wales, Australia University of Texas at Austin, USA University of Thessaly, Greece University of Wisconsin-Madison, ISA	(CARB), USA		
Department of Energy (Office of Energy), USAHelmholtz InstituteForschungszentrum Juelich, GermanyImperial College London, UKJohn KilnerMassachusetts Institute of Technology, USAHarry TullerTechnology, USAHarry TullerNorwegian University of Science and Technology (NTNU), NorwayHomas LippertPaul Scherrer Institute (PSI), SwitzerlandThomas LippertSouthwest Research Institute, University of Bergen, NorwayBrian SomerdayUniversiti Teknologi Malaysia, MalaysiaXing ZhangUniversity of California, Berkeley, USAUSAUniversity of California, Irvine (National Fuel Cell Research Center), USAReiner KirchheimUniversity of Göttingen, Germany University of Steingen, Massa University of Kalifornia, Irvine (National Fuel Cell Research Center), USAReiner KirchheimUniversity of Göttingen, Germany University of Kalifornia, Irvine (National Fuel Cell Research Center), USAKenneth ChristensenUniversity of Totre Dame, USA, University of New South Wales, AustraliaKenneth ChristensenUniversity of Visconsin-Madison, University of Visconsin-Madison, Ian RobertsonLin Robertson	Colorado School of Mines, USA		
Energy Efficiency and Renewable Energy), USA Helmholtz Institute Forschungszentrum Juelich, Germany Imperial College London, UK Massachusetts Institute of Technology, USA Norwegian University of Science and Technology (NTNU), Norway Paul Scherrer Institute (PSI), Switzerland Southwest Research Institute, USA Tsinghua University, China University China University of Bergen, Norway University of Bergen, Norway University of California, Irvine (National Fuel Cell Research Center), USA University of California, Irvine (National Fuel Cell Research Center), USA University of South Wales, Australia University of Notre Dame, USA University of Notre Dame, USA, Kenneth Christensen University of Texas at Austin, USA	Department of Energy (Office of		
Energy), USAImperial College London, UKJohn KilnerImperial College London, UKJohn KilnerMassachusetts Institute of Technology, USAHarry TullerTechnology, USAImperial College London, UKNorwegian University of Science and Technology (NTNU), NorwayImperialPaul Scherrer Institute (PSI), SwitzerlandThomas LippertSouthwest Research Institute, USABrian SomerdayUniversity of Bergen, NorwayImperial California, Berkeley, UNiversity of California, Berkeley, USAUniversity of California, Irvine (National Fuel Cell Research Center), USAReiner KirchheimUniversity of Göttingen, Germany Reiner KirchheimReiner KirchheimUniversity of Notre Dame, USA, University of Notre Dame, USA, University of Texas at Austin, USAKenneth ChristensenUniversity of Oxford, UKImiversity of Texas at Austin, USAImiversity of Texas at Austin, USAUniversity of Visconsin-Madison, IsoaIan RobertsonImiversity of Wisconsin-Madison, Ian Robertson	Energy Efficiency and Renewable		
Helmholtz Institute Forschungszentrum Juelich, Germany Imperial College London, UK John Kilner Massachusetts Institute of Technology, USA Norwegian University of Science and Technology (NTNU), Norway Paul Scherrer Institute (PSI), Switzerland Southwest Research Institute, USA Tsinghua University, China University of Bergen, Norway University of Bergen, Norway University of California, Berkeley, USA University of California, Irvine (National Fuel Cell Research Center), USA University of Göttingen, Germany University of Kermany University of Kermany University of Kermany University of Notre Dame, USA, University of Notre Dame, USA, University of Texas at Austin, USA University of Texsas at Austin, USA University of Texsas at Austin, USA University of Wisconsin-Madison, Ian Robertson	Energy), USA		
Forschungszentrum Juelich, Germany Imperial College London, UK Massachusetts Institute of Fechnology, USA Norwegian University of Science and Technology (NTNU), Norway Paul Scherrer Institute (PSI), Switzerland Southwest Research Institute, USA University of Bergen, Norway University of Bergen, Norway University of Bergen, Norway University of California, Irvine (National Fuel Cell Research Center), USA University of Gditingen, Germany University of Schingen, Germany University of New South Wales, Australia University of Texas at Austin, USA University of Texas at Austin, USA University of Thessaly, Greece University of Wisconsin-Madison, Ian Robertson	Helmholtz Institute		
GermanyJohn KilnerImperial College London, UKJohn KilnerMassachusetts Institute of Technology, USAHarry TullerNorwegian University of Science and Technology (NTNU), Norway	Forschungszentrum Juelich,		
Imperial College London, UKJohn KilnerMassachusetts Institute of Technology, USAHarry TullerNorwegian University of Science and Technology (NTNU), NorwayHarry TullerPaul Scherrer Institute (PSI), SwitzerlandThomas LippertSouthwest Research Institute, USABrian SomerdayUSAUniversity, China University of Bergen, NorwayXing ZhangUniversity of Bergen, NorwayUniversity of California, Berkeley, USAUniversity of California, Irvine (National Fuel Cell Research Center), USAUniversity of Göttingen, Germany University of Edinburgh, UKReiner KirchheimUniversity of New South Wales, AustraliaKenneth ChristensenUniversity of Texas at Austin, USALin RobertsonUniversity of Thessaly, Greece University of Wisconsin-Madison, Ian RobertsonIan Robertson	Germany		
Massachusetts Institute of Technology, USA Norwegian University of Science and Technology (VTNU), Norway Paul Scherrer Institute (PSI), Switzerland Southwest Research Institute, USA University, China University of Bergen, Norway Universiti Teknologi Malaysia, Malaysia University of California, Berkeley, USA University of California, Berkeley, USA University of California, Irvine (National Fuel Cell Research Center), USA University of Göttingen, Germany University of Göttingen, Germany University of Settingen, Germany University of New South Wales, Australia University of Notre Dame, USA, Kenneth Christensen University of Texas at Austin, USA University of Thessaly, Greece University of Wisconsin-Madison, Ian Robertson	Imperial College London, UK		
Iechnology, USAIechnology, USANorwegian University of Science and Technology (NTNU), NorwayImage: Science Paul Scherrer Institute (PSI), SwitzerlandSouthwest Research Institute, USABrian SomerdayJust Scherrer Institute, USABrian SomerdayUniversiti Teknologi Malaysia, MalaysiaXing ZhangUniversity of Bergen, NorwayImage: Science University of California, Berkeley, USAUniversity of California, Irvine (National Fuel Cell Research Center), USAReiner KirchheimUniversity of Göttingen, Germany University of Kerneth ChristensenImage: Science University of New South Wales, AustraliaUniversity of New South Wales, Luniversity of Texas at Austin, USAKenneth ChristensenUniversity of Texas at Austin, USAIan RobertsonUniversity of Wisconsin-Madison, University of Wisconsin-Madison,Ian Robertson	Massachusetts Institute of	Harry Tuller	
Norwegian University of Science and Technology (NTNU), Norway Paul Scherrer Institute (PSI), Switzerland Southwest Research Institute, USA Tsinghua University, China University of Bergen, Norway University of Bergen, Norway University of California, Berkeley, USA University of California, Irvine (National Fuel Cell Research Center), USA University of Edinburgh, UK University of Edingen, Germany University of South Wales, Australia University of Notre Dame, USA, University of Notre Dame, USA, University of Texas at Austin, USA University of Thessaly, Greece University of Wisconsin-Madison, Ian Robertson	Technology, USA		
And rechnology (NTNO), NorwayPaul Scherrer Institute (PSI), SwitzerlandThomas LippertSouthwest Research Institute, USABrian SomerdayTsinghua University, ChinaXing ZhangUniversiti Teknologi Malaysia, MalaysiaAndUniversity of Bergen, NorwayImage: California, Berkeley, USAUsSAUniversity of California, Irvine (National Fuel Cell Research Center), USAUniversity of Göttingen, Germany University of Keiner KirchheimUniversity of New South Wales, AustraliaUniversity of Notre Dame, USA, University of Texas at Austin, USAUniversity of Texas at Austin, USAUniversity of Wisconsin-Madison, University of Wisconsin-Madison, University of Wisconsin-Madison,	Norwegian University of Science		
Pail Scherrer Institute (PSI), SwitzerlandInomas LippertSouthwest Research Institute, USABrian SomerdayTsinghua University, ChinaXing ZhangUniversiti Teknologi Malaysia, MalaysiaInomas LippertUniversity of Bergen, NorwayInomas LippertUniversity of Bergen, NorwayInomas LippertUniversity of California, Berkeley, USAInomas LippertUniversity of California, Irvine (National Fuel Cell Research Center), USAReiner KirchheimUniversity of Göttingen, Germany University of New South Wales, AustraliaReiner KirchheimUniversity of Notre Dame, USA, University of Texas at Austin, USAKenneth ChristensenUniversity of Texas at Austin, USAIan RobertsonUniversity of Wisconsin-Madison, University of Wisconsin-Madison,Ian Robertson	and Technology (NTNU), Norway		
SwitzerlandBrian SomerdaySouthwest Research Institute, USABrian SomerdayTsinghua University, ChinaXing ZhangUniversiti Teknologi Malaysia, MalaysiaIniversity of Bergen, NorwayUniversity of Bergen, NorwayIniversity of California, Berkeley, USAUniversity of California, Berkeley, USAReiner KirchheimUniversity of California, Irvine (National Fuel Cell Research Center), USAReiner KirchheimUniversity of Göttingen, Germany University of New South Wales, AustraliaKenneth ChristensenUniversity of Notre Dame, USA, University of Oxford, UKKenneth ChristensenUniversity of Texas at Austin, USAIniversity of Thessaly, GreeceUniversity of Wisconsin-Madison, USAIan Robertson	Paul Scherrer Institute (PSI),	I nomas Lippert	
Southwest Research Institute, USABrian SomerdayTsinghua University, ChinaXing ZhangUniversiti Teknologi Malaysia, MalaysiaImage ContemportUniversity of Bergen, NorwayImage ContemportUniversity of California, Berkeley, USAImage ContemportUniversity of California, Irvine (National Fuel Cell Research Center), USAReiner KirchheimUniversity of Göttingen, Germany University of Edinburgh, UKReiner KirchheimUniversity of New South Wales, AustraliaKenneth ChristensenUniversity of Oxford, UKImage ContemportUniversity of Texas at Austin, USAImage ContemportUniversity of Thessaly, GreeceIan Robertson	Switzeriand		
USAXing ZhangTsinghua University, ChinaXing ZhangUniversiti Teknologi Malaysia, MalaysiaImage: Constraint of the second se		Brian Somerday	
Tsingnua University, ChinaXing ZhangUniversiti Teknologi Malaysia, MalaysiaImage: Constraint of the second	USA Tainghua University China	Ving Thong	
University of Pergen, NorwayImage: Constraint of California, Berkeley, USAUniversity of California, Berkeley, USAImage: Constraint of California, Irvine (National Fuel Cell Research Center), USAUniversity of Göttingen, GermanyReiner KirchheimUniversity of Göttingen, GermanyReiner KirchheimUniversity of New South Wales, AustraliaKenneth ChristensenUniversity of Oxford, UKImage: Constraint of California, USAUniversity of Texas at Austin, USAImage: Constraint of California, USAUniversity of Thessaly, GreeceIan Robertson	Tsingnua University, China	Xing Zhang	
WataystaUniversity of Bergen, NorwayUniversity of California, Berkeley, USAUniversity of California, Irvine (National Fuel Cell Research Center), USAUniversity of Göttingen, Germany University of Edinburgh, UKUniversity of Edinburgh, UKUniversity of New South Wales, AustraliaUniversity of Notre Dame, USA, University of Texas at Austin, USAUniversity of Thessaly, Greece University of Wisconsin-Madison, University of Wisconsin-Madison,	Malaysia		
University of California, Berkeley, USA University of California, Irvine (National Fuel Cell Research Center), USA University of Göttingen, Germany University of Edinburgh, UK University of New South Wales, Australia University of Notre Dame, USA, Kenneth Christensen University of Oxford, UK University of Texas at Austin, USA University of Thessaly, Greece University of Wisconsin-Madison, Ian Robertson	Indidysid		
University of California, Irvine (National Fuel Cell Research Center), USA University of Göttingen, Germany University of Edinburgh, UK University of New South Wales, Australia University of Notre Dame, USA, University of Notre Dame, USA, University of Oxford, UK University of Texas at Austin, USA University of Thessaly, Greece University of Wisconsin-Madison, USA	University of California Parkelov		
University of California, Irvine (National Fuel Cell Research Center), USA University of Göttingen, Germany Reiner Kirchheim University of Edinburgh, UK University of New South Wales, Australia University of Notre Dame, USA, Kenneth Christensen University of Oxford, UK University of Oxford, UK University of Texas at Austin, USA University of Thessaly, Greece University of Wisconsin-Madison, Ian Robertson	University of California, Berkeley,		
University of California, Invine (National Fuel Cell Research Center), USAReiner KirchheimUniversity of Göttingen, Germany University of Edinburgh, UKReiner KirchheimUniversity of Edinburgh, UKUniversity of New South Wales, AustraliaUniversity of Notre Dame, USA, University of Oxford, UKKenneth ChristensenUniversity of Texas at Austin, USAUniversity of Thessaly, GreeceUniversity of Wisconsin-Madison, USAIan Robertson	USA University of California Invine		
Center), USAReiner KirchheimUniversity of Göttingen, GermanyReiner KirchheimUniversity of Edinburgh, UKUniversity of New South Wales, AustraliaUniversity of Notre Dame, USA, University of Oxford, UKKenneth ChristensenUniversity of Oxford, UKUniversity of Texas at Austin, USAUniversity of Thessaly, GreeceIan Robertson	(National Eucl Coll Desearch		
University of Göttingen, GermanyReiner KirchheimUniversity of Edinburgh, UKUniversity of New South Wales, AustraliaUniversity of Notre Dame, USA,Kenneth ChristensenUniversity of Oxford, UKUniversity of Texas at Austin, USAUniversity of Thessaly, GreeceUniversity of Wisconsin-Madison, UISAIan Robertson	Center) USA		
University of New South Wales, Australia University of Notre Dame, USA, University of Oxford, UK University of Texas at Austin, USA University of Thessaly, Greece University of Wisconsin-Madison, USA	University of Göttingen Germany	Reiner Kirchheim	
University of New South Wales, Australia University of Notre Dame, USA, Kenneth Christensen University of Oxford, UK University of Texas at Austin, USA University of Thessaly, Greece University of Wisconsin-Madison, Ian Robertson	University of Edinburgh LIK		
Australia Australia University of Notre Dame, USA, Kenneth Christensen University of Oxford, UK University of Texas at Austin, USA University of Thessaly, Greece University of Wisconsin-Madison, University of Wisconsin-Madison, Ian Robertson	University of New South Wales		
University of Notre Dame, USA,Kenneth ChristensenUniversity of Oxford, UKUniversity of Texas at Austin, USAUniversity of Thessaly, GreeceUniversity of Wisconsin-Madison,UISA	Australia		
University of Oxford, UK Image: Construction of the cons	University of Notre Dame, USA	Kenneth Christensen	
University of Texas at Austin, USA University of Thessaly, Greece University of Wisconsin-Madison, Ian Robertson	University of Oxford, UK		
University of Thessaly, Greece University of Wisconsin-Madison, Ian Robertson	University of Texas at Austin, USA		
University of Wisconsin-Madison, Ian Robertson	University of Thessaly. Greece		
	University of Wisconsin-Madison	lan Robertson	
UJA	USA		

2. Securing external research funding*

External research funding secured in FY2017

Total: 1,772,850,451 yen

 Describe external funding warranting special mention. Include the name and total amount of each grant.
 * External research funding includes "Grant-in-Aid for Scientific Research," funding for "commissioned research projects," and for "joint" research projects" as listed under "Research projects" in Appendix 3-2, Project Expenditures.

COMPETITIVE FUND			
RECIPIENT	NAME OF GRANT	FUNDED BY:	FY2017
			TOTAL JPY
Joichi Sugimura	R&D Project (Useful Technology of Hydrogen)	NEDO	318,331,440
Chihaya Adachi	Exploratory Research for Advanced Technology (ERATO)	JST	274,106,000
Tatsumi Ishihara	KAKENHI (Specially Promoted Research)	JSPS	117,800,000
Kazunari Sasaki	Demonstration Research on a Hydrogen-based Society through Collaboration among Industry, University, Government and Local Community	MEXT	103,274,000

COMPETITIVE FUND

RECIPIENT	NAME OF GRANT	FUNDED BY	PERIOD	TOTAL JPY
Miho Yamauchi	CREST	JST	FY2015-18 (FY2017)	120,055,000 (36,530,000)
Development of Highly Se	elective Nanoalloy Catalysts for the Rea	alization of Car	bon-neutral Ene	rgy Cycles
Hiroshige Matsumoto	SIP	JST	FY2014-18 (FY2017)	48,750,000 (11,212,500)
Novel Steam Electrolysis				
Naotoshi Nakashima	KAKENHI (Scientific Research A)	JSPS	FY 2016-20 (FY 2017)	41,600,000 (8,970,000)
Nanocarbon-based Advar Society	nced Materials Design for the Construc	tion of Ecologic	al Energy and E	nvironmental
Ikuo Taniguchi	ALCA	JST	FY2014-18 (FY2017)	31,980,000 (9,100,000)
Development of CO ₂ Sep and the Effective Separat	aration Membrane Comprised of Nano- ion Process	-gels with Cont	rolled Phase Tra	insition by pKa
Motonori Watanabe	KAKENHI (Young Scientists A)	JSPS	FY 2017-19 (FY2017)	24,440,000 (10,530,000)
Development of Noble Me catalyst	etal-free Photocatalyst System Using Ir	on-based Orga	nometalic Com	olex as Co-
Edalati Kaveh	KAKENHI (Scientific Research B)	JSPS	FY 2016-19 (FY2017)	18,460,000 (1,300,000)

Development of New Mg-Based Hydrogen Storage Materials by Binding-Energy Engineering

Masanobu Kubota	KAKENHI (Scientific Research B)	JSPS	FY 2016-18 (FY2017)	18,070,000
Elucidation of Material Deg Safety of Next-generation	gradation Phenomena in High-tempera Hydrogen Utilization Technologies	ture Hydrogen	Environment for	Ensuring
Xing Zhang	KAKENHI (Scientific Research B)	JSPS	FY 2016-18 (FY2017)	17,680,000 (4,030,000)
Laser-flash Raman Spectro Materials	oscopy Method and Heat Transfer Perfo	ormance of No	vel Low-dimensio	nal
Toshinori Matsushima	KAKENHI (Scientific Research B)	JSPS	FY 2016-18	17,290,000
Organic-inorganic Perovsk	ite Field-effect Transistors		(FY2017)	(1,950,000)
- 99				
Masaaki Sadakiyo	KAKENHI (Young Scientists A)	JSPS	FY 2017-18 (FY2017)	16,250000
Control of Catalytic Proper	ty Using the Interface between Metal	and Metal-Orga	anic Framework	(0,110,000)
			EV2017 10	11 210 000
Yukina Takahashi	KAKENHI (Young Scientists A)	JSPS	(FY2017-19 (FY2017)	(4,940,000)
Formation of Highly-efficie	ent Photoenergy Conversion Fields by C	Controlling Con	figuration and Ori	ientation of
Anisotropic Metal Nanopar	TICIES			
Miho Yamauchi	KAKENHI	JSPS	FY2017-18	6,370,000
Creation of High Density F	Challenging Research (Exploratory) Jydrogen Storage Metal Nano-capsules		(FY2017)	(4,030,000)
or cation of right bonsity r				
Motonori Watanabe	KAKENHI	JSPS	FY2017-18	6,370,000
An Attempt to Synthesize	Cyclacene Using Decarbonyl Aromatic	Ring Reaction	(FY2017)	(3,510,000)
	, , ,	5		
Ikuo Taniguchi	KAKENHI (Scientific Research C)	JSPS	FY 2017-19	4,940,000
Elucidation of CO ₂ Transp	ort Mechanism of Piperazine-containing	g CO2 Separati	on Membranes	(2,000,000)
Ki Suk Yoon	KAKENHI (Scientific Research C)	JSPS	FY 2015-17 (FY2017)	4,940,000
Elucidating Electron Trans	fer Mechanism of New [NiFe]hydrogen	ase Surpassing	Platinum Catalys	st
			EV 2017 10	4 0 4 0 0 0 0
Kenshi Itaoka	KAKENHI (Scientific Research C)	JSPS	(FY2017)	4,940,000 (650,000)
Estimation of Utility Funct Climate Policy	ion and Construction of Cost Benefit M	odel Considerir	ng Altruistic Benef	fits of
Aleksandar Staykov	KAKENHI (Young Scientists B)	JSPS	FY2016-17 (FY2017)	4,290,000
Molecular Spin-switch for Photocatalysis	Effective Electron-hole Separation at H	ybrid Interface	s for Application	in
John Druce	KAKENHI (Young Scientists B)	JSPS	FY2016-17 (FY2017)	4,160,000 (1,950,000)
Effects of Feed Gas Comp	osition on Surface Reactivity and Degra	adation of Solic	d Oxide Electrode	S

(Prof. Druce resigned from I²CNER as of November 14, 2017)

Daniel Orejon	KAKENHI (Young Scientists B)	JSPS	FY2016-17 (FY2017)	4,160,000 (1,430,000)
Effect of Micro-/Nano-pa	tterned Wettability on the Fundamenta	Is of Conde	nsation Heat Trans	fer
Yukina Takahashi Development of Plasmor and a p-type Semicondu	KAKENHI (Challenging Exploratory Research) n-induced Charge Separation Systems a ctor	JSPS t the Interfa	FY2016-17 (FY2017) ace between a Met	3,640,000 (650,000) al Nanoparticle
Thomas Bayer	KAKENHI (Young Scientists B)	JSPS	FY2017-18 (FY2017)	3,250,000 (2,210,000)
Study of Nanocellulose a (Dr. Bayer resigned from	s a New Proton Conducting Material for <i>m I²CNER as of January 31, 2018)</i>	Fuel Cells	and Electrolysers	
Arnaud Macadre	KAKENHI (Young Scientists B)	JSPS	FY2016-17 (FY2017)	3,120,000 (1,170,000)
Ultra-grain Refinement a	s Prevention against Hydrogen-assisted	l Crack Prop	bagation	
Sivasankaran Harish	KAKENHI Research Activity start-up	JSPS	FY2016-17 (FY2017)	2,990,000 (1,430,000)
Liquid-vapour Phase Cha	inge Phenomena of Droplet Impacting of	on a Super-	heated Nano-engir	neered Surfaces
Ryosuke Komoda Elucidation of Inhibitory Factors	KAKENHI Research Activity start-up Effect of Gas Impurities on Hydrogen-ir	JSPS nduced Frac	FY2017-18 (FY2017) cture and Effects of	2,990,000 (1,430,000) f Various
Tatsunori Ikeda	KAKENHI (Young Scientists B)	JSPS	FY2016-17 (FY2017)	2,340,000 (910.000)
Development of Monitori Velocity and Attenuation	ng Techniques in CO ₂ capture and Stor	age Using ⁻	Temporal Change i	n Seismic
COMMISSIONED RES	EARCH			
RECIPIENT	FUNDED BY		PERIOD	TOTAL JPY
Hiroshige Matsumoto	JSPS (Core-to-Core Program)		FY2017-21 (FY2017)	90,000,000 (15,840,000)
Solid Oxide Interfaces for	r Faster Ion Transport (SOIFIT)		```	

Tatsumi Ishihara	JSPS (PIRE Program)	FY2015-20 (FY2017)	49,500,000 (9,900,000)	
Integrated Computational Materials Engineering for Active Materials and Interfaces in Chemical Fuel				
Production				

Tatsumi IshiharaMETIFY201719,999,980Research in the Field of Proton Conducting Ceramic Materials (PCCM) and Membranes, Oxygen TransportMembranes, Low Temperature Solid Oxide Fuel Cells and Electrolysers

Ikuo Taniguchi	Tokyo Boeki Mechanics	FY2017-19 (FY2017)	19,698,235 (4,420,235)
Development of Carbon-free Hyd Membranes	rogen Production System with Hig	h Performance CO ₂ Separa	ation

Kenshi ItaokaToyotaFY201716,849,898Study on Domestic Infrastructure for Hydrogen Use and Economic Impact of Hydrogen Energy Introduction
in the World

Kenshi Itaoka	Meiji University	FY2017-18 (FY2017)	6,400,000 (3,200,000)
Creation of Environment	al and Economic Evaluation Model on CCS		
Yukihiro Higashi	METI	FY2017	2,373,357
Research of Thermophys	sical Properties for the Binary R1123 + R1234yf Ref	rigerant Mixture	
Kenshi Itaoka	Mizuho Information & Research Institute	FY2017	2,042,330
Study on Measures to Ex	pedite Implementation of CCS in Japan		
Keigo Kitamura	Geothermal Energy Research & Development	FY2017	1,409,206
Experimental Study for E	Electrical Impedance Measurement of High-tempera	ture Rock	

JOINT RESEARCH			
RECIPIENT	FUNDED BY	PERIOD	TOTAL JPY
Industrial Research Unit (Mazda Project)	Mazda Motor Corporation	FY2017-19 (FY2017)	71,248,000 (31,308,000)
Mobile Energy Storage for Lov	w-carbon Society		
Masanobu Kubota	Air Liquid Laboratories	FY2014-17 (FY2017)	51,468,000 (9,480,000)
Effect of Gas Impurities on In	hibition of Hydrogen Embrittlement of Stee	ls	
Yukihiro Higashi	Daikin	FY2017-18 (FY2017)	19,960,182 (19,960,182)
Accurate Measurements of Th	nermodynamic Properties for Next Generation	on Refrigerants	
Petros Sofronis	IHI	FY2017	4,992,000
Study on High-temperature C	o-electrolysis of CO_2 and H_2O		
Naotoshi Nakashima	Zeon	FY2017	4 800 000
Study on the Development of	a Nanocarbon-based New Reduction Cataly	vst	4,000,000
		,	
Naotoshi Nakashima	Itoh Kouki	FY2017	3,600,000
Study on Durability Testing of	f Fuel Cell Catalyst		
Masanobu Kubota	Nippon Steel & Sumitomo Metal Corporation	FY2017-18 (FY2017)	1,944,000 (1,944,000)
Development of Fatigue Strer Properties	ngth Evaluation Method-based on Fretting F	atigue and Small Cr	ack Growth
Ikuo Taniguchi	Tosoh	FY2017	1,500,000
Natural Gas Purification by Me	embrane Separation with Novel Amines		

Shigenori Fujikawa	Tokyo Ohka Kogyo	FY2016-17 (FY2017)	1,500,000 (1,000,000)
Surface Functionalization by	Ultrathin Polymer Coating and Elucidation	its Functional Origin	
Bidyut Baran Saha	Tokyo Boeki Engineering	FY2017	1,200,000
Performance Improvement of	f Adsorption Chiller and its Validity		
Yukihiro Higashi	Kobe Steel	FY2017	720,000
Fundamental Study of the He	eat Transfer Medium for Heat Exchangers		
Naotoshi Nakashima	ADEKA	FY2017	60,0000
Study on Graphene-based fue	el Cell Catalyst		

3. International research conferences or symposiums held to bring world's leading researchers together

- Indicate the number of international research conferences or symposiums held in FY2017 and give up to three examples of the most representative ones using the table below.

FY 2017: 5 meetings	
Major examples (meeting titles and places held)	Number of participants
2018 I ² CNER Annual Symposium, I ² CNER Hall, Ito Campus, Kyushu University, Fukuoka January 31, 2018	From domestic institutions: 80 From overseas institutions: 86
2018 I ² CNER International Workshops, Ito Campus, Kyushu University, Fukuoka February 2, 2018	From domestic institutions: 282 From overseas institutions: 114
The 10th International Conference on Boiling and Condensation Heat Transfer (ICBCHT 2018), Nagasaki Brick Hall, Nagasaki March 12-15, 2018	From domestic institutions: 150 From overseas institutions: 60

4. Center's management system
Please diagram management system in an easily understood manner.
If any changes have been made in the management system from that in the latest "center project," please describe them. Please describe any important changes made in such as the center director, administrative director, head of host institution, and officer(s) in charge at the host institution (e.g., executive vice president for research).

5. Campus Map - Please draw a simple map of the campus showing where the main office and principle investigator(s) are located.

Appendix 3-1a FY 2017 Records of Center Activities

1-1. Number of researchers and other center staffs

* Please fill in the number of researchers and other center staffs in the table blow.

* Please describe the final goals for achieving these numbers and dates when they will be achieved.

a) Principal Investigators (full professors, associate professors or other researchers of comparable standing)

			(persons)
	At beginning of project	At end of FY 2017	Final goal (Date: March, 2020)
Researchers from within the host institution	16	16	18
Foreign researchers invited from abroad	11	9	8
Researchers invited from other Japanese institutions	3	0	0
Total principal investigators	30	25	26

b) Total members

			At beginning of pr	oject	At end of FY2017		Final goal (Date: March, 2020)	
			Number of persons	%	Number of persons	%	Number of persons	%
	Resea	archers	71		182		173	
		Overseas researchers	21	30%	89	49%	80	46%
		Female researchers	4	6%	27	15%*	29	17%
	Princip	al investigators	30		25		26	
		Overseas PIs	11	37%	11	44%	8	31%
		Female PIs	1	3%	1	4%	1	4%
	Othe	r researchers	41		157		147	
		Overseas researchers	10	24%	78	50%	72	49%
		Female researchers	3	7%	26	17%	28	19%
Res	search s	upport staffs	32		67		70	
A	dministr	ative staffs	23		20		21	
Total form th	number ne "core' ce	of people who ' of the research nter	126		269		264	

(* revised in the final version)

Appendix 3-2 Project Expenditures

1) Overall project funding

* In the "Total Cost" column, enter the total amount of funding required to implement the project, without dividing it into funding sources.

* In the "Amount covered by WPI funding" column, enter the amount covered by WPI within the total amount.

* In the "Personnel," "Project activities," "Travel," and "Equipment" blocks, the items and details may be changed to coincide with the project's actual content.

			(Million yens)	Costs (Mil	llion yens)
Cost Items	Details (For Personnel - Equipment please fill in the breakdown of fiscal expenditure, and the income breakdown for Research projects.)	Total Costs	Amount covered by WPI funding	WPI grant in FY 2017	1320
	Center director and Administrative director	22	22		
	Principal investigators (no. of persons):15	212	172	Costs of establishing and maintaining	
Dorsonnol	Other researchers (no. of persons):80	371	274	facilities	2
reisonnei	Research support staffs (no. of persons):27	61	61	Establishing new facilities	0
	Administrative staffs (no. of persons):23	102	52	(Number of facilities: , 0m ²)	
	Subtotal	768	581	Repairing facilities (Building 2)	2
	Gratuities and honoraria paid to invited principal investigators (no. of persons):71	6	6	(Number of facilities:5,000m ²) Others	0
	Cost of dispatching scientists (no. of persons):0	0	0		
	Research startup cost (no. of persons):24	52	21	Cost of equipment procured	534
	Cost of satellite organizations (no. of satellite organizations):1	189	189	Hall Voltage Measuring System	15
	Cost of international symposiums (no. of symposiums):1	5	5	(Number of units:1)	
Project activities	Rental fees for facilities	242	242	Ultra high resolution scanning electron micrograph	52
	Cost of consumables	18	18	(Number of units:1)	
	Cost of utilities	34	6	Others	467
	Other costs	45	23		
	Subtotal	591	510		
	Domestic travel costs	16	14	*1. Funding sources that include government su	ubsidies
	Overseas travel costs	47	44	(including Enhancements promotion expenses (機能強化
Travel	Travel and accommodations cost for invited scientists (no. of domestic scientists):57 (no. of overseas scientists):60	20	19	促進経費), National university reform reinforcen promotion subsidy (国立大学改革強化推進補助 indirect funding, and allocations from the univer	nent 金) etc.), rsity′s
	Travel cost for scientists on secondment (no. of domestic scientists):2 (no. of overseas scientists):60	3	3	*2 When personnel, travel, equipment (etc.) ex are covered by Grants-in-Aid or under commissi research projects or joint research projects, the	penses oned amounts
	Subtotal	86	80	should be entered in the "Research projects" blo	ock.
	Depreciation of buildings	81	1		
Equipment	Depreciation of equipment	854	208		
	Subtotal	935	209		
	Projects supported by other government subsidies, etc. *1	120			
	Grants-in-Aid for Scientific Research, etc.	213			
Research projects	Commissioned research projects, etc.	913			
fixed)	Joint research projects	144			
/	Ohers (donations, etc.)	5			
	Subtotal	1,395	0		
	Total	3,775	1,380		

1,380

2) Costs of Satellites and Partner institutions

, 			(Million yens)
Cost Items	Details	Total Costs	Amount covered by WPI funding
Personnel	Principal investigators (no. of persons):2 Other researchers (no. of persons):6 Research support staffs (no. of persons):20 Administrative staffs		
	Subtotal	118	118
Project activities	Subtotal	49	49
Travel	Subtotal	19	19
Equipment	Subtotal	3	3
Research projects	Subtotal	0	0
	Total	189	189

Appendix 4 FY 2017 Status of Collaboration with Overseas Satellites

1. Coauthored Papers
- List the refereed papers published in FY 2017 that were coauthored between the center's researcher(s) in domestic institution(s) (include satellite institutions) and overseas satellite institution(s). List them by overseas satellite institution in the below blocks.
- Transcribe data in same format as in Appendix 1. Italicize the names of authors affiliated with overseas satellite institutions.
- For reference write the Appendix 1 item number in parentheses after the item number in the blocks below. Let it free, if the paper is published in between Jan.-Mar. 2018 and not described in Appendix 1.

Overseas Satellite 1 University of Illinois at Urbana-Champaign (Total: 18 papers)

NU	Description
(8)	Martin, M.L., <i>Dadfarnia, M.</i> , Orwig, S., Moore, D. and Sofronis, P. (2017), A microstructure-based mechanism of cracking in high temperature hydrogen attack, Acta Materialia, 140, 300-304.
(27)	Ma, S., Liu, J., Sasaski, K., Lyth, S.M. and <i>Kenis, P.</i> (2017), Carbon foam decorated with silver nanoparticles for electrochemical CO ₂ conversion, Energy Technology, 5 (6), 861-863.
(70)	<i>Kearney, K.</i> , Iyer, A., <i>Rockett, A.</i> , Staykov, A. and <i>Ertekin, E.</i> (2017), Effect of Surface Coverage and Composition on the Stability and Interfacial Dipole of Functionalized Silicon, Journal of Physical Chemistry C, 121 (21), 11312-11318.
(118)	Jhong, HR.M., Tornow, C.E., Kim, C., Verma, S., Oberst, J.L., Anderson, P.S., <i>Gewirth, A.A.</i> , Fujigaya, T., Nakashima, N. and <i>Kenis, P.J.A.</i> (2017), Gold Nanoparticles on Polymer-Wrapped Carbon Nanotubes: An Efficient and Selective Catalyst for the Electroreduction of CO ₂ , ChemPhysChem, 18 (22), 3274-3279.
(136)	Nygren, K.E., Bertsch, K.M., Wang, S., Bei, H., Nagao, A. and <i>Robertson, I.M.</i> (2017), Hydrogen embrittlement in compositionally complex FeNiCoCrMn FCC solid solution alloy, Current Opinion in Solid State and Materials Science, 22 (1), 1-7.
(138)	Wang, S., Nagao, A., Edalati, K., Horita, Z. and <i>Robertson, I.M.</i> (2017), Hydrogen-modified dislocation structure in a cyclically deformed ferritic-pearlitic low carbon steel, Acta Materialia, 144, 164-176.
(148)	Wang, S., Nagao, A., Edalati, K., Horita, Z. and <i>Robertson, I.M.</i> (2017), Influence of hydrogen on dislocation self-organization in Ni, Acta Materialia, 135, 96-102.
(154)	Verma, S., Hamasaki, Y., Kim, C., Huang, W., Lu, S., Jhong, HR.M., <i>Gewirth, A.A.</i> , Fujigaya, T., Nakashima, N. and <i>Kenis, P.J.A.</i> (2018), Insights into the Low Overpotential Electroreduction of CO ₂ to CO on a Supported Gold Catalyst in an Alkaline Flow Electrolyzer, ACS Energy Letters, 3 (1), 193-198.
(196)	<i>Kearney, K.</i> , Iyer, A., <i>Rockett</i> , A., Staykov, A. and <i>Ertekin, E.</i> (2018), Multiscale Computational Design of Functionalized Photocathodes for H ₂ Generation, Journal of the American Chemical Society, 140 (1), 50-53.
(199)	Hoang, T.T.H., Ma, S.C., Gold, J.I., <i>Kenis, P.J.A.</i> and <i>Gewirth, A.A.</i> (2017), Nanoporous Copper Films by Additive-Controlled Electrodeposition: CO ₂ Reduction Catalysis, ACS Catalysis, 7 (5), 3313-3321.
(227)	Ida, S., <i>Kearney, K.</i> , Futagami, T., Hagiwara, H., Sakai, T., Watanabe, M., <i>Rockett, A.</i> and Ishihara, T. (2017), Photoelectrochemical H ₂ evolution using TiO ₂ -coated CaFe ₂ O ₄ without an external applied bias under visible light irradiation at 470 nm based on device modeling, Sustainable Energy & Fuels, 1, 280-287.
(309)	Kim, N., Turner, E.M., Kim, Y., Ida, S., Hagiwara, H., Ishihara, T. and <i>Ertekin, E.</i> (2017), Two-Dimensional TiO ₂ Nanosheets for Photo and Electro-Chemical Oxidation of Water: Predictions of Optimal Dopant Species from First-Principles, Journal of Physical Chemistry C, 121 (35), 19201-19208.
(331)	Nagao, A., <i>Dadfarnia, M.</i> , Wang, S., Sofronis, P., Nygren, K.E. and <i>Robertson, I.M.</i> (2017), Effect of hydrogen on fatigue-crack growth of a ferritic-pearlitic low carbon steel, American Society of Mechanical Engineers, 6B2017, PVP2017-66273.
(335)	Kitamura, K., Honda, H., Takaki, S., Nishihara, M., <i>Christensen, KT.</i> and Mitani, Y. (2017), Experimental study of two-phase fluid flow in the porous sandstone by P-wave velocity and electrical impedance measurement, Energy Procedia, 114, 4948-4953.

(348)	Nagao, A., Wang, S., Nygren, K.E., <i>Dadfarnia, M.</i> , Sofronis, P. and <i>Robertson, I.M.</i> (2017), Microstructural change of low-alloy steels caused by hydrogen-induced fatigue-crack growth, International Hydrogen Conference (IHC 2016): Materials Perfomance in Hydrogen Environments, 228-234.
(349)	<i>Dadfarnia, M.</i> , Nagao, A., Somerday, B.P., Shembri, P.E., Foulk III, J.W., Nibur, K.A., Balch, D.K., Ritchie, R.O. and Sofronis, P. (2017), Modeling hydrogen-induced fracture and crack propagation in high strength steels, International Hydrogen Conference (IHC 2016): Materials Perfomance in Hydrogen Environments, 572-580.
(365)	Nygren, K., Nagao, A., Sofronis, P. and <i>Robertson I.M.</i> (2017), The influence of high internal hydrogen content on the evolved microstructure during fatigue-crack growth in 316L stainless steel, International Hydrogen Conference (IHC 2016): Materials Perfomance in Hydrogen Environments, 270-276.
(-)	Nagao, A., <i>Dadfarnia, M.</i> , Somerday, B.P., Sofronis, P. and O. Ritchie, R.O. (2018), Hydrogen-enhanced-plasticity mediated decohesion for hydrogen-induced intergranular and "quasi-cleavage" fracture of lath martensitic steels, Journal of the Mechanics and Physics of Solids, 112, 403-430.

2. Status of Researcher Exchanges
- Using the below tables, indicate the number and length of researcher exchanges in FY 2017. Enter by institution and length of exchange.
- Write the number of principal investigator visits in the top of each space and the number of other researchers in the bottom.

Overseas Satellite 1: University of Illinois at Urbana-Champaign

<To satellite>

	Under 1 week	From 1 week to 1 month	From 1 month to 3 months	3 months or longer	Total	
EV:0017	0	0	0	0	0	
FY2017	2	1	0	1	4	

<From satellite>

	Under 1 week	From 1 week to 1 month	From 1 month to 3 months	3 months or longer	Total	
EV:0017	1	1	0	0	2	
FY2017	5	9	1	0	15	

Appendix 5 FY 2017 Visit Records of World Top World-level Researchers from Abroad

* If top world-level researchers have visited/ stayed at the Center, please provide information on them in the below table.

* To determine whether the researcher is a "top world-level researcher," please see the standard stipulated in the Application Guideline.

Total: 44

	Name	Age	Affiliation (Position title, department, organization)	Academic degree, specialty	Record of research activities (Awards record, etc.)	Time, duration	
1	George Shimizu		Prof., Department of Chemistry, University of Calgary, Canada	Ph.D., Inorganic Chemistry	 Strem/Canadian Society for Chemistry Award for Pure or Applied Inorganic Chemistry Petro-Canada Young Innovator Award 	April 21, 2017	1
2	Denis Morineau		Senior Scientist, Department of Materials and Nanoscience Institute of Physics of Rennes, University of Rennes 1, France	Ph.D., Physical- Chemistry	 Head of the Department of Materials and Nanosciences, IPR, Rennes (2012-2016) Member of the executive board of the Competence Center in Nanoscience, C'Nano (2005-) 	May 17, 2017- May 19, 2017	P
3	Emmanuel Fort		Prof., École Supérieure de Physique et de Chimie Industrielles of Paris (ESPCI ParisTech), France	Ph.D., Wave-matter Interactions	 Prix Jerphagnon (2012) Diderot Innovation Award (2009) The founder of the start-up company Abbelight 	May 17, 2017- May 19, 2017	F
4	Thierry Epicier		Research Director, French National Centre for Scientific Research (CNRS) at INSA-LYON (National Intsitute for Applied Sciences), University of Lyon, France	Ph.D., Chemistry of Materials	 Vice Director of the national 'TEM and Atom Probe' network METSA (FR CNRS 3507) (2016-) A member of the executive board of the European Microscopy Society (EMS) (2012-) Director, Consortium Lyon - St-Etienne de Microscopie (CLYM) (2007-2015) 	May 17, 2017- May 19, 2017	P

Appendix 5

Summary of activities during stay at center (e.g., participation as principal investigator; short-term stay for joint research; participation in symposium) ²CNER Seminar Series Presentation Participation in NanoMat 2017 Participation in NanoMat 2017 Participation in NanoMat 2017
5	Xavier Bouju	51	Research Director, French National Centre for Scientific Research (CNRS) at Centre d'é laboration des matériaux et d'études structurales (CEMES), France	Ph.D., Physics	 Deputy-Director of the Labex NEXT (2016-) President of Midi-Pyrénées section of SFP (2015-) Evaluator-expert for the National Research Agency (ANR), Program Nano (P3N and P2N) and General Great Challenges (Défi7) (2009-) Evaluator-expert for the NMP-FP7 program and M-era.Net program (2011-2016) Expert at the Observatory for Micro and Nanotechnologies – OMNT (2006) Expert at Evaluator-expert for NCN, FNRS, MI-CNRS, C'Nano IdF, University Montpellier, CR Franche-Comté, University Catholic Louvain, Ohio University (2005) 	May 17, 2017- May 19, 2017	Ρί
6	Reiko Oda		Research Director, French National Centre for Scientific Research (CNRS) at Institute of Chemistry & Biology of Membranes & Nano objects (UMR5248 CBMN), Universite Bordeaux, France	Ph.D., Physics	 Director of Laboratoire International Associé –CNRS (LIA, Mix laboratory) between Bordeaux University, Kumamoto University and Kyoto University for Chiral Nanomaterials for Photonic Applications (2015-) Invited Professor, Kumamoto University (2016-) 	May 17, 2017- May 19, 2017	Pi
7	Vincent Fournee		Research Director, French National Centre for Scientific Research (CNRS) at the Institut Jean Lamour, France	Ph.D., Physical- Chemistry	 P.I or Co P.I. of nine different projects (funding agencies: ANR, ADEME, MESR, CNRS or industrial partners) (2010-) 	May 17, 2017- May 19, 2017	Pa
8	Galina Besstremyannaya		Lead Research Fellow, The Center for Economic and Financial Research at New Economic School, Russia	Ph.D. in Math Methods, Ph.D. in Economics	 Listed among Russian specialists on Japan according to bio-bibliographical dictionary Miliband S. D. (2008) Russian orientalists of the 20th and Early 21st Centuries. Moscow. ISBNº 978-5-02-036364-9 	May 22, 2017	I ²

Participation in NanoMat 2017

Participation in NanoMat 2017

Participation in NanoMat 2017

²CNER Seminar Series Presentation

I²CNER

9	John A. Kilner	71	Prof., Department of Materials, Imperial College, London, UK	Ph.D., Materials for solid oxide fuel cells and electrolysers	 Daiwa Adrian Prize (2016) Imperial College Medal (2016) Christian Friedrich Schonbein Contribution to Science Medal (2014) Platinum Medal, Institute of Materials Minerals and Mining (2012) Somiya Award, International Union of Materials Research Societies (2012) Fellow, City and Guilds Institute of London (2007) Royal Society Armourers and Brasiers' Company Prize, Royal Society (2005) Verulam Medal, Institute of Materials, Minerals and Mining (2005) Schoenbein Medal, European Solid Oxide Forum (2004) Excellence in Teaching, Imperial College (1997) 	 (1) May 23-26, 2017 & June 1-7, 2017 (2) June 25, 2017- July 5, 2017 (3) November 27, 2017-December 4, 2017 (4) January 28, 2018- February 15, 2018 	(1 (2 (3 (4 1 ² Ir Ir
10	Stephen Cheng		Prof., Department of Polymer Science, The University of Akron, USA	Ph.D., Polymer Chemistry	 The Polymer Physics Prize of The American Physical Society (2013) The Cooperative Research Award of the Division of Polymer Materials Science and Engineering, American Chemical Society (2005) The Distinguished Corporate Inventors Award, American Society of Patent Holders, The National Inventors Hall of Fame (1995 and 1998) The Presidential Young Investigator Award(1991) 	May 26, 2017	1 ²
11	James Stubbins		Prof., Department Head of Nuclear, Plasma, and Radiological Engineering, University of Illinois, USA	Ph.D., Materials Science	 Donald Biggar Willett Professor (2013) Outstanding Achievement Award, Materials Science and Technology Division (2012) Media Relations Award - Award for Communications & Marketing Excellence 2011 Engineering Council Award for Excellence in Advising (2011) Glenn Murphy Award (2010) International Scientist of the Year (2004) American Men and Women of Science (1994) 	(1) June 23, 2017- July 1, 2017 (2) January 27, 2018- February 3, 2018	(1 Vi (2 Aı W
12	Andrew A. Gewirth	58	Prof., Department of Chemistry, University of Illinois at Urbana Champaign, USA	Ph.D., Chemistry	□University of Illinois Scholar (1995) □Alfred P. Sloan Fellowship (1993) □DOE Outstanding Accomplishment in Materials Science (1993) □Fellow, UIUC Center for Advanced Study (1991) □Presidential Young Investigator Award (1990)	(1) June 25, 2017- June 29, 2017 (2) January 28, 2018- February 3, 2018	(1 Vi (2 Ai W

1) Joint Research

(2) Joint Research and Participation in Site /isit as Principal Investigator

3) Joint Research

4) Joint Research and Participation in ²CNER Annual Symposium and nternational Workshops as Principal nvestigator

²CNER Seminar Series Presentation

(1) Joint Research, Participation in Site /isit as Satellite Faculty

2) Joint Research, Participation in I²CNER Annual Symposium and International Workshops as Satellite Faculty

1) Joint Research, Participation in Site /isit as Principal Investigator

(2) Joint Research, Participation in I²CNER Annual Symposium and International Workshops as Principal Investigator

_								
	13	Thomas Lippert	55	Prof., Department of Chemistry and Applied Biosciences, Laboratory of Inorganic Chemistry, Swiss Federal Institute of Technology Zurich, and Paul Scherrer Institut, Thin Films & Interfaces Group, Villigen-PSI, Switzerland	Dr. of Science, Physical Chemistry	 President of the Senate of the European-Materials Research Society (E-MRS) (from 1/2016 to 2/2017) President of the European-Materials Research Society (E-MRS) (from 1/2014 to 12/2015) Dr. honoris causa, University of Bucharest, Romani (2014) Drice-President of the European-Materials Research Society (E-MRS) (from 6/2011 to 12/2013) Member of the E-MRS Executive Committee (from 2008) 	(1) June 26, 2017- June 30, 2017 (2) January 29, 2018-February 9, 2018	(1 Vi (2 I ² In
	14	Paul Kenis		Prof., Department Head of Chemical and Biomolecular Engineering, University of Illinois, USA	Ph.D., Chemistry	 University Scholar, University of Illinois, UC (2011) Beckman Fellow, Center for Advanced Study (2007-2008) Helen Corley Petit Scholar, College of Liberal Arts and Sciences, University of Illinois, UC (2007-2008) CAREER Award, National Science Foundation (2006) Xerox Award for Faculty Research, College of Engineering, University of Illinois, UC (2006) Excellence in Teaching Award, School of Chemical Sciences, University of Illinois, UC (2006) Accenture Award for Excellence in Advising, College of Engineering, University of Illinois, UC (2003) Excellence in Advising Award, College of Engineering, University of Illinois, UC (2002, 2003, 2008) Young Faculty Award, 3M (2001-2005) Collins Scholar, Academy of Excellence in Engineering Education (2001) TALENT Postdoctoral Fellowship, Dutch Science Foundation (1997-1998) 	June 26, 2017- July 1, 2017	Jc St
	15	Brian P. Somerday	49	Dr., South West Research Institute, USA	Ph.D., Materials Science and Engineering	DOE Hydrogen and Fuel Cell Program Achievement Award (2014) Best Poster Award, ASME 12th Fuel Cell Science, Engineering, and Technology Conference (2014)	(1) June 26, 2017- July 1, 2017 (2) January 29, 2018-February 3, 2018	(1 Vi (2 I ² Ir

) Joint Research and Participation in Site sit as Principal Investigator
P) Joint Research and Participation in CNER Annual Symposium and International Workshops as Principal Investigator

loint Research, Participation in Site Visit as Satellite Faculty

(1) Joint Research and Participation in Site /isit as Principal Investigator

(2) Joint Research and Participation in ²CNER Annual Symposium and International Workshops as Principal Investigator

16	Xiuling Li		Prof., Department of Electrical and Computer Engineering, University of Illinois, USA	Ph.D., Chemistry	 IEEE Fellow (2017) Campus Excellent Teacher ranked by students, UIUC (2015) Faculty Entrepreneurial Fellow, Inaugural, College of Engineering, UIUC (2015-2016) Distinguished Lecturer, IEEE Nanotechnology Council (2014-2016) Board of governors, IEEE Photonics Society (2014-2016) A. T. Yang Research Award, ECE, UIUC (2013) Dean's Award for Excellence in Research, College of Engineering, UIUC (2012) DNR Young Investigator Program Award (2011-14) DARPA Young Faculty Award (2009-2011) NSF CAREER Award (2008-2013) Fellow, Center for Advanced Study (2010-2011) Finalist, ECE Pratt Teaching award (2010) IEEE Senior Member (2008) 	June 27, 2017- July 1, 2017	Jo
17	Juliy Baryshnikov	56	Prof., Department of Electrical and Computer Engineering, Department of Mathematics, University of Illinois, USA	Ph.D., Applied Mathematics, Nonlinear Dynamics and Control, Applied Topology, Stochastic Processes	 Member of Faculty Senate (2015-2017) AMS Committee on Mathematical Research Communities (Chair) Lady Davis Professorship, Technion (2003) Alexander von Humboldt Fellow (1992) 	June 27, 2017- July 2, 2017	JC
18	Xing Zhang	56	Prof., Department of Engineering Mechanics, Tsinghua University, China	Ph.D., Thermal Science	 Significant Contribution Awards from the 10th Asian Thermophysical Properties Conference (2013) National Nature Science Award (Second Class) from the State Council of the People's Republic of China (2011) Best Paper Award from the Heat Transfer Society of Japan (2008) 	July 16, 2017- August 11, 2017	JC
19	Rigoberto C. Advincula		Prof., Department of Macromolecular Science and Engineering, Case Western Reserve University, USA	Ph.D., Chemistry	 Chair, Polymer Chemistry Division, American Chemical Society (ACS) 2015 Herman Mark Scholar Award, Poly. Chem. Div., American Chemical Society, 2013 Fellow, American Chemical Society (ACS) 2010 	July 24, 2017	I ²

20	Sahel Ashhab	Senior Scientist, Qatar Environment and Energy Research Institute, Qatar	Ph.D., Condensed Matter Physics	 F. Yoshihara, T. Fuse, S. Ashhab, K. Kakuyanagi, S. Saito, and K. Semba Superconducting qubit-oscillator circuit beyond the ultrastrong coupling regime, Nature Phys. 13, 44 (2017). 	August 21, 2017	l ²
21	Jeffrey S. Moore	Director, The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA	Ph.D., Materials Science	 Member, National Academy of Sciences (2017) Edward Leete Award (2015) Professor, Howard Hughes Medical Institute Fellow, American Chemical Society Fellow, Polymeric Materials Science and Engineering (PMSE) Fellow, American Academy of Arts and Sciences UIUC Campus Award for Excellence in Undergraduate Teaching LAS Dean's Award for Excellence in Undergraduate Teaching 	August 22, 2017	Pa
22	Martin D. Burke	Prof., Department of Chemistry, University of Illinois at Urbana- Champaign, USA	Ph.D., Chemistry, Medical Doctor	 American Chemical Society Nobel Laureate Award for Graduate Education (2017) Hirata Memorial Lectureship Award, Japan (2014) Thieme-IUPAC Prize in Synthetic Organic Chemistry (2014) International Organic Chemistry Foundation Lectureship Award, Japan (2014) Elias J. Corey Award for Outstanding Contribution in Organic Synthesis by a Young Investigator, American Chemical Society (2013) Arthur C. Cope Scholar Award, American Chemical Society (2011) Bristol-Myers Squibb Lectureship at Harvard University (2010) Frontiers in Chemistry Lectureship at The Scripps Research Institute (2010) Novartis Lectureship at The University of California Berkeley (2010) 	August 22, 2017	Pi
23	King Li	Dean, Carle Illinois College of Medicine, University of Illinois at Urbana- Champaign, USA	Ph.D., Medical Doctor	 Holding 16 patents Co-author of more than 150 articles Wells Fargo Faculty Scholar at Wake Forest 	August 22, 2017	P

							-
24	Reiner Kirchheim	74	Prof., The Institut für Metallphysik, University of Göttingen, Germany	Ph.D., Hydrogen in Metals, Thermodynamics of alloys, Interstitial solution and diffusion in glasses	 Foreign Affiliate of the United States National Academy of Engineering (2017) Leibniz-Medaille of the IFW Dresden (2013) Hydrogen & Energy Award, H&E-Symposium (2010) Lee Hsun Lecture Award, IMR Shenyang, Chinese Academy of Sciences (2007) International Award of Materials Engineering for Recourses, Akita, Japan (2005) Heyn-Denkmünze (highest award of the German Materials Society, DGM) (2004) Honda Memorial Award, Tohoku University (2003) Highly Cited Author in Materials Science (1980-2000) Carl Wagner Prize (1990) Scripta Metallurgica Outstanding Paper Award (1987) 	September 6, 2017- September 13, 2017	J
25	Eduardo Ruiz Hitzky		Senior Research Prof., Materials Science Institute of Madrid (ICMM), Spanish National Research Council (CSIC), Spain	Ph.D., Chemistry	 The National Academy of Sciences Award (Cuba, 2017) The GUILLAUME BUDÉ Medal (Collège de France, Paris, 2011) The Josep Leal Medal (Salón Internacional de la Quimica. Expoquimia, Barcelona 2011) 	September 22, 2017	ľ
26	Min Soo Kim		Prof., Department of Mechanical Engineering, Multiscale Mechanics Design, Seoul National University, South Korea	Ph.D., Thermal Engineering	 70 Excellent PhDs of College of Engineering, Seoul National University(2016) Best Industry-University Cooperation Award, College of Engineering, Seoul National University(2015) Han-Song Award, Society of Air-conditioning and Refrigerating Engineers of Korea(2014) 	September 29, 2017	ľ
27	Yong Tae Kang		Prof., Department of Mechanical Engineering, Korea University, South Korea	Ph.D., Engineering Physics	 The Korean Society of Mechanical Engineers, Nam-Heon Academic Award(2012) Ministry of Land, Transport and Maritime Affairs, Minister Award(2012) 	September 29, 2017	ľ

28	Moshe Matalon	Caterpillar Distinguished Professor, Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, USA	Ph.D., Mechanical and Aerospace Engineering	 Numa Manson Medal of the Institute for the Dynamics of Explosions and Reacting Systems (IDERS)(2017) AIAA Fluid Dynamics award (2016) Fellow of the American Physical Society, Institute of Physics and American institute of Aeronautics and Astronautics (AIAA) AIAA Pendray Aerospace Literature Award (2010) 	October 31, 2017	ľ
29	Leif Hammarstrom	Prof., Department of Chemistry, Uppsala University, Sweden	Ph.D., Physical Chemistry	 Elected Member of the Royal Society of Sciences (May 2013) Nominated as No 1 and offered two open Chair Professorships: Chemical Physics (Uppsala Univ) and Molecular Electronics (Royal Inst. Techno., Stockholm) (May 2004) The Thuréus prize by the Royal Society of Sciences (Uppsala) (2003) 	November 13, 2017	ľ
30	Cynthia Volkert	Prof., Institute of Materials Physics, University of Göttingen Germany	Ph.D., Physics	 Member of the National Academy of Sciences Leopoldina (Since 2011) Research items 4,444 Reads 4,375 Citations 	January 9, 2018	ľ
31	Christian Jooss	Prof., Institute of Materials Physics, University of Göttingen Germany	Ph.D., Physics	 Memberships: German Physical Society; Materials Research Society, USA; Scientific committee of the Open University; Founder member of the Institute of research and education (IFB); Göttingen Member in the Society of Scientists for Peace in Gö ttingen, e. V. Research items 1,582 Reads 228 Citations 	January 9, 2018	ľ
32	Yang Li	Prof., Peking University, China]	Ph.D., Inorganic Chemistry	 Chang Jiang Scholar by Chinese Ministry of Education(2014) National Outstanding Youth Fund of China(2011) 	January 19, 2018	l

²CNER Seminar Series Presentation ²CNER Seminar Series Presentation ²CNER Seminar Series Presentation ²CNER Seminar Series Presentation ²CNER Seminar Series Presentation

							T
33	Harry L. Tuller	72	Prof., Department of Materials Science and Engineering, Massachusetts Institute of Technology, USA	Engr. Sc. D., Functional electroceramic materials	 Distinguished Life Membership in American Ceramic Society (2016) Senior Member, IEEE (2016) President, International Society of Solid State Ionics (2015) Fellow, Electrochemical Society (2014) Helmholtz International Fellow Award (2012) Somiya Award of the International Union of Materials Research Society (2012) Outstanding Achievement Award, High Temperature Division, Electrochemical Society (2010) McMahon Award, Alfred University, NY (2009) Orton Award, American Ceramic Society (2007) Von Humboldt Award (1997-2002) Fulbright Award (1989-1990) 	January 20, 2018- January 31, 2018	Jc Ai W
34	J. Steven Brown		Vice Provost and Dean of Graduate Studies, The Catholic University of America, USA	Ph.D., Mechanical Engineering	□ASHRAE Distinguished Service Award (2015) □International Journal of Refrigeration Best Paper Award (2013/2014) □Elected Fellow of ASHRAE (2013) □ASHRAE Journal Paper Award (2010)	January 30, 2018- February 1, 2018	Pa ar
35	Colin Atkinson		Emeritus Professor, Department of Mathematics, Imperial College London, UK	Ph.D., Applied Mathematics and Mathematical Physics	Fellow of the Royal Society (1998)	January 30, 2018- February 2, 2018	Pa ar
36	Pega Hrnjak		Director, Air Conditioning and Refrigeration Center (ACRC); President, Creative Thermal Solutions (CTS); Research Professor, Department of Mechanical Science and Engineering, University of Illinois at Urbana- Champaign, USA	Ph.D., Fluid Mechanics	 J&E Hall Medal (2012) Gustav Lorentzen Medal (2011) Ritter von Rittinger award (2008) 	January 31, 2018- February 1, 2018	Pa

37	Gautam Biswas	61	Director, Indian Institute of Technology Guwahati (IIT Guwahati), India	Ph.D., Fluid Mechanics	 Distinguished Alumnus Award from Indian Institute of Technology Kharagpur (2016) J.C. Bose National Fellowship (2011) 	January 31, 2018- February 1, 2018	Pa
38	Liwei Wang		Vice dean, Institute of Refrigeration and Cryogenics, Mechanical Engineering School, Shanghai Jiao Tong University, China	Ph.D., Sorption Technology for Refrigeration	 Science and Technology Award for Chinese Youth National Second Award for the Natural Science Research National 100 Outstanding PhD Theses IIR Young Researchers Award (James Joule Award) First Award of Natural Science Research in Shanghai City Royal Society International Incoming Fellowship in UK EU Marie Curie International Incoming Fellowship 	January 31, 2018- February 2, 2018	P) ai
39	Ugur Pasaogullari		Associate Director, Center for Clean Energy Engineering, University of Connecticut, USA	Ph.D., Mechanical Engineering	• Early Career Development Awards (2011)	January 31, 2018- February 2, 2018	P: ai
40	Wilhelm A. Meulenberg		Head of the Division "Gas Separation Membranes" at the Institute for Energy and Climate Research – Materials Synthesis and Processing: IEK-1, Forschungszentrum Jü lich GmbH, Germany	Ph.D., Metallurgy and Materials Science	 Professor, Faculty of Science and Technology, University of Twente, Netherland Co-author (2014), Structural and functional properties of SrTi1–xFexO3–δ (0 x 1) for the use as oxygen transport membrane, Separation and Purification Technology, 147, 414-421. DOI: 10.1016/j.seppur.2014.12.020 	January 31, 2018- February 2, 2018	P: ai
41	Jong Hak KIM		Professor, Department of Chemical and Biomolecular Engineering, Yonsei University, South Korea	Ph.D., Chemical Engineering	 Electrochemical devices including solar cells and fuel cells Design of functional polymers, inorganic nanomaterials and nanocomposites Polymer electrolytes for facilitated transport membranes Formation of metal nano-particles and nano-membranes Thermodynamics and phase separation of polymer solution or polymer blends Polymer membranes for gas separation and filtration 	February 2, 2018	P

articipation in I ² CNER Annual Symposium
articipation in I ² CNER Annual Symposium nd International Workshops
articipation in I ² CNER Annual Symposium nd International Workshops
articipation in I ² CNER Annual Symposium nd International Workshops
articipation in I ² CNER Annual Symposium

42	Amgad Elgowainy	Senior Scientist and Team Leader, Argonne National Laboratory, USA	Ph.D., Mechanical Engineering	 The DOE's Office of Technology Transition's Technology Commercialization Fund (TCF) Award(2017) for the project Two-Tier Tube-Trailer Consolidation Technology for Fast Fueling of Hydrogen Fuel Cell Electric Vehicles 	February 2, 2018	Pa W
43	Robert Gross	Reader, Energy Policy and Technology; Director, Centre for Energy Policy and Technology (ICEPT), Imperial College London, UK	Ph.D., Energy Policy	 Chair of the Council of the British Institute of Energy Economics(2014) Commissioner, Commission on Scotland's Energy Future, Scottish Government (2013-2014) Specialist Advisor, Energy and Climate Change Select Committee, House of Commons (2012-2013) Specialist Advisor, Energy and Climate Change Select Committee, House of Commons (2011) Chair, Technical Advisory Group, Persistence Factor Methodologies, Carbon Trust (2010-2012) Specialist Advisor, European Union Select Committee, House of Lords (2008) 	March 1, 2018	I ²
44	John Rose	Research Prof., School of Engineering and Materials Science, Queen Mary University of London, UK	Ph.D., Engineering	 Fellow of the UK Institution of Mechanical Engineers and of the American Society of Mechanical Engineers. Member of the UK Heat Transfer Committee and of the UK Heat Transfer Society UK editor of International Journal of Heat and Mass Transfer, International Communications in Heat and Mass Transfer, Experimental Heat Transfer 	March 9, 2018	I ²

Participation in I²CNER International Vorkshops

²CNER Seminar Series Presentation

²CNER Seminar Series Presentation

Appendix 6 FY2017 State of Outreach Activities

* Using the table below, show the achievements of the Center's outreach activities in FY2017(number of activities, times held).

* Describe those activities that have yielded novel results or that warrant special mention in the "Special Achievements" space below.

* In appendix 7, list and describe media coverage (e.g., articles published, programs aired) in FY2017 resulting from press releases and reporting.

Activities	FY2017 (number of activities, times held)
PR brochure, pamphlet	7
Lectures, seminars for general public	23
Teaching, experiments, training for elementary, secondary and high school students	44
Science café	1
Open houses	1
Participating, exhibiting in events	4
Press releases	13

<Special Achievements>

WPI Science Symposium

• I²CNER ran a booth, and Prof. Andrew Chapman gave a lecture at "Science Café," February 2018.

Nijou Junior High School Students' Visit to I²CNER

•As part of a local government-run active learning program, 60 students from Nijou Junior High School (Itoshima City, Fukuoka) visited I²CNER and other research centers at Kyushu University, September 2017. Prof. Motonori Watanabe and Dr. Thomas Bayer gave lectures, and Prof. Keigo Kitamura performed a hands-on experiment in front of the students. The event was broadcasted by 2 TV stations.

Special Lecture by Prof. Fujikawa for Highschool Students

•Prof. Shigenori Fujikawa gave a special lecture for students at the awarding ceremony of the Fukuokaprefectural competition of "Japan Highschool Science Championships," September 2017.

Prof. Ogo's Press Conference

•A press conference was held for Prof. Ogo's research results (published in the article "One Model, Two Enzymes: Activation of Hydrogen and Carbon Monoxide") and one TV station broadcasted it, June 2017.

American Association for the Advancement of Science (AAAS) Annual Meeting

• Director Sofronis served as a panelist in one of the AAAS workshops, February 2018.

Appendix 7 FY 2017 List of Project's Media Coverage

* List and describe media coverage (e.g., articles published, programs aired) in FY2017 resulting from press releases and reporting.

	Date	Types of Media (e.g., newspaper, television)	Description
1	AprMay 2017	Newspaper	Nikkei Sangyo Shimbun (Apr. 11), New Energy News (May 1) Newspaper articles introducing the development of high performance inorganic metal oxide hybrid catalysts using carbon nanotubes (Profs. Naotoshi Nakashima and Tsuyohiko Fujigaya)
2	AprMay 2017	Website	Bloomberg Technology (Apr. 24), The Science Times (May 2) Web news articles entitled, "New iPhone screen puts blue-colored spotlight on Japan Supplier" and "Organic Laser: Recent Development For Longer Light Emissions," respectively (Prof. Chihaya Adachi)
3	Jun. 2017	Television, Newspaper, Website, Magazine	Television Nishi-Nippon Corporation (Jun. 6), Asahi Shimbun Digital (Jun. 7), Nihon Keizai Shimbun (Jun. 7), Nishi-Nippon Shimbun (Jun. 8), Sankei News (Jun. 8), Nikkei Sangyo Shimbun (Jun. 8), Phys.org (Jun. 22), AZoCleantech (Jun. 23) DWV-Mitteilungen (Sep. 14) Newspaper/web news/magazine articles covering the press release "One Model, Two Enzymes: Activation of Hydrogen and Carbon Monoxide" (Prof. Seiji Ogo)
4	Jul. 2017	Website	New Electronics (Jul. 13), Photonics Media (Jul. 13) Web news articles entitled, "Harnessing hydrogens for high efficiency OLEDs" and "Hydrogen Could Provide Path to High-Efficiency OLEDs," respectively (Prof. Chihaya Adachi)
5	Aug. 2017	Newspaper, Website	Nihon Keizai Shimbun's website (Aug. 29), Nikkan Kogyo Shimbun (Aug. 30), Shinano Mainichi Shimbun's website (Aug. 30) Newspaper/web news articles covering the press release "Cutting-edge technology for mass production of highly formable Ni-based superalloy" (Prof. Zenji Horita)
6	Sep. 1, 2017	Website	Nihon Keizai Shimbun's website Web news article introducing the research on the structural basis of the redox switches in the NAD+-reducing soluble [NiFe]-hydrogenase (Prof. Seiji Ogo et al.)
7	Sep. 2017	Television, Newspaper, Website	NHK Fukuoka (Sep. 14), TVQ Kyushu Broadcasting (Sep. 14), Itosima Shimbun (Sep. 21), Fukuoka Internet TV (Sep. 28) TV/newspaper/web news covering local junior high school students' visit to I ² CNER as part of a field trip organized by the Fukuoka prefectural government (Profs. Motonori Watanabe, Keigo Kitamura, and Dr. Thomas Bayer)
8	Sep. 28, 2017	Newspaper	Kagaku Kogyo Nippo Newspaper article featuring a special lecture at the Fullerenes-Nanotubes-Graphene General Symposium in Kyoto (Prof. Tsuyohiko Fujigaya)

9	Oct. 2017	Newspaper, Website	Nikkei Sangyo Shimbun (Oct. 12), National Institute for Environmental Studies' (NIES) website (Oct. 17) Newspaper/web news articles covering the press release "A Fusion of Biomimetic Fuel and Solar Cells Based on Hydrogenase, Photosystem II, and Cytochrome c Oxidase" (Prof. Seiji Ogo)
10	Oct. 2017	Newspaper, Website	Nihon Keizai Shimbun (Oct. 17), Science Portal (Oct. 24) Newspaper/web news articles entitled, "Reveal structures related to the size of the earthquake in the Nankai Trough" and "Reveal the relationship between 2016 earthquake and 1944 Tonankai mega earthquake," respectively (Prof. Takeshi Tsuji)
11	Oct. 18, 2017	Newspaper	The Suisan-Keizai Daily News Newspaper article entitled, "Characteristic features of seismogenic fault controlling earthquake magnitude" (Prof. Takeshi Tsuji)
12	Nov. 2, 2017	Newspaper	Nikkei Sangyo Shimbun (Nov. 2) Newspaper article covering the press release "NIR-driven H ₂ evolution from water: Expanding wavelength range for solar energy conversion" (Prof. Ken Sakai)
13	Nov. 10, 2017	Newspaper, Website	Kyodo News, Jiji.com, Nihon Keizai Shimbun, Asahi Shimbun Digital, Sankei News, Sankei Biz, Kyoto Shimbun, Saga Shimbun, Nishi-Nippon Shimbun Nishina Memorial Award for the contribution to the development of OLEDs (Prof. Chihaya Adachi)
14	Nov. 25, 2017	Newspaper	Nihon Keizai Shimbun (Nov. 25), Nishi-Nippon Shimbun (Nov. 26) Newspaper article introducing the research on the crust damage caused by the 2016 Kumamoto earthquake (Prof. Takeshi Tsuji)
15	Dec. 2017-Jan. 2018	Newspaper	Nikkei Sangyo Shimbun (Dec. 28), Kagaku Shimbun (Jan. 19) Newspaper articles covering the press release "Continuous synthesis of glycolic acid as a next generation fuel" (Profs. Masaaki Sadakiyo et al)
16	Jan. 2018	Newspaper, Website	Kumamoto Nichinichi Shimbun (Jan. 20), Asahi Shimbun Digital (Jan. 24) Newspaper/web news articles entitled, "Horizontal sliding observed at the Uchinomaki hot spring area" and "Hot spring dormant during the 2016 earthquake," respectively (Prof. Takeshi Tsuji)
17	Mar. 8, 2018	Newspaper	Nishi-Nippon Shimbun Special edition for elementary school students: An interview article by kids reporters focusing on hydrogen energy research at Kyushu University (Prof. Kazunari Sasaki)