
## Dr. Marshall Davidson Hatch



Birth: December 24, 1932

Perth, Western Australia

Nationality: Australian

Address: Division of Plant Industry

**CSIRO** 

G. P. O. Box 1600

Canberra, A. C. T. 2601

Australia

Position: Chief Research Scientist, Division of

Plant Industry, Commonwealth Scientific and Industrial Research

Organisation (CSIRO)

## Education and Career:

1954

| 1955 - 1959 | Research Scientist, Plant Physiology Unit, CSIRO, Sydney   |
|-------------|------------------------------------------------------------|
| 1959        | Ph. D., University of Sydney                               |
| 1959 - 1961 | Post Doctoral Fellow, Department of Biochemistry,          |
|             | University of California                                   |
| 1961 - 1966 | Research Officer and Head of Biochemistry Section,         |
|             | David North Plant Research Centre, CSR Co. Ltd., Brisbane, |
|             | Queensland                                                 |
|             |                                                            |

1967 Reader, Botany Department, University of Queensland

1968—1969 Research Officer with CSR Co. Ltd. (as above)

B. Sc. (Hon.), University of Sydney

1970 — Chief Research Scientist, Division of Plant Industry, CSIRO

## Awards and Distinctions:

Clarke Medal, Royal Society of N. S. W., 1973

Lemberg Medal, Australian Biochemical Society, 1974

Fellow, Australian Academy of Science, 1975-

Charles Kettering Award for Photosynthesis, American Society of Plant Physiology, 1980

Fellow, Royal Society of London, 1980 –

President, Australian Society of Plant Physiologists, 1980-1981

Member of the Order of Australia, 1981

Rank Prize, J. Arthur Rank Group, U. K., 1981

Foreign Associate, National Academy of Sciences (U.S.A.), 1990-

Representative Works:

- 1. Hatch, M.D. and Slack, C.R. (1966). Photosynthesis by sugar-cane leaves: A new carboxylation reaction and the pathway of sugar formation. *Biochem. J.*, **101**, 103-111.
- 2. Hatch, M.D. and Slack, C.R. (1970). Photosynthetic CO<sub>2</sub>-fixation pathways. *Ann. Rev. Plant Physiol.*, **21**, 141-162.
- 3. Hatch, M.D. and Kagawa, T. (1974). NAD malic enzyme in leaves with C<sub>4</sub>-pathway photosynthesis and its role in C<sub>4</sub> acid decarboxylation. *Arch. Biochem. Biophys.*, **160**, 346-349.
- 4. Hatch, M.D. (1978). Regulation of enzymes in C<sub>4</sub> photosynthesis. In "Current Topics in Cellular Regulation", Horecker, B.L. and Stadtman, E.R., eds., Vol. 14, 1-27. Academic Press, New York.
- 5. Hatch, M.D. and Boardman, N.K., eds., Vol.8 (1981) and Vol.10 (1987). Photosynthesis. In "The Biochemistry of Plants. A Comprehensive Treatise," Stumpf, P.K. and Conn, E.E., editors-in-chief. Academic Press, New York.
- 6. Ashton, A.R., Burnell, J.N. and Hatch, M.D. (1984). Regulation of C<sub>4</sub> photosynthesis: Inactivation of pyruvate, P<sub>i</sub> dikinase by ADP-dependent phosphorylation and activation by phosphorolysis. *Arch. Biochem. Biophys.*, 230, 492-503.
- 7. Hatch, M.D. (1986). Has plant biochemistry finally arrived? *Trends in Biochem. Sci.*, 11, 9-10.
- 8. Hatch, M.D. (1987). C<sub>4</sub> photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. *Biochim. Biophys. Acta*, 895, 81-106.
- 9. Jenkins, C.L.D., Furbank, R.T. and Hatch, M.D. (1989). Mechanism of C<sub>4</sub> photosynthesis: a model describing the inorganic carbon pool in bundle sheath cells. *Plant Physiol.*, **91**, 1372-1381.
- 10. Hatch, M.D. and Burnell, J.N. (1990). Carbonic anhydrase activity in leaves and its role in the first step of C<sub>4</sub> photosynthesis. *Plant Physiol.*, **93**, 825-828.

## Academic Achievements:

Dr. Marshall Hatch (and his colleague) provided the first clear evidence for the existence of a new biochemical process for the photosynthetic assimilation of carbon dioxide. They named this process the C<sub>4</sub> dicarboxylic acid pathway of photosynthesis, now known simply as the C<sub>4</sub> pathway or C<sub>4</sub> photosynthesis.

Before this discovery, it had been generally assumed that the biochemical pathway known as the Calvin cycle (or photosynthetic carbon reduction cycle) was the universal mechanism for photosynthesis in all plants. In this process the 3-carbon compound 3-phosphoglyceric acid is the first product formed as carbon dioxide is assimilated. Using the energy of sunlight this product is transformed through several steps into the end-product: sugar and starch.

Dr. Hatch and his colleagues showed, in a series of carefully designed experiments with sugarcane leaves, that the first products of photosynthetic

carbon dioxide assimilation were the C<sub>4</sub> dicarboxylic acids, oxaloacetate, malate and aspartate. The carbon assimilated into these acids was then transferred to 3-phosphoglyceric acid and then metabolized by the Calvin cycle. Dr. Hatch and his colleagues subsequently identified all but one of the ten key enzymes specifically involved in the C<sub>4</sub> pathway, including two novel enzymes, pyruvate, P<sub>i</sub> dikinase and NADP malate dehydrogenase. They showed that both these latter enzymes are regulated by light but by quite different mechanisms. They also provided the first evidence that the initial reactions of the new C<sub>4</sub> pathway were located in mesophyll cells while the Calvin cycle reactions were confined to bundle sheath cells. So, while the two processes are functionally integrated at the biochemical level they are physically separated. Work over many years has confirmed that the function of the special reactions of C<sub>4</sub> photosynthesis is to concentrate carbon dioxide in bundle sheath cells for fixation by the Calvin cycle.

The plants with the C<sub>4</sub>pathway are called C<sub>4</sub> plants to distinguish them from C<sub>3</sub> plants which use only the Calvin cycle for photosynthesis. At present there are more than 1,300 species of C<sub>4</sub> plants known. They occur in two monocotyledonous families (Gramineae and Cyperaceae) as well as several dicotyledonous families.

 $C_4$  plants are capable of higher rates of leaf photosynthesis than  $C_3$  plants, especially at higher tremperatures, and they also show higher water-use efficiency. As a consequence,  $C_4$  plants can grow more rapidly and produce more dry matter than  $C_3$  plants under appropriate conditions. They are also commonly more tolerant to drought. These features can be explained in terms of their capacity to concentrate carbon dioxide for use by the Calvin cycle. The resolution of the mechanism and function of  $C_4$  photosynthesis has been important in understanding the basis of plant productivity. The molecular biology of  $C_4$  photosynthesis is now being actively pursued and possibilities for transforming plants to improve their agricultural usefulness are being considered.

These findings of Dr. Hatch and his colleagues stimulated many studies by different scientists throughout the world. The resulting comparative information has clearly shown that there are three subgroups of C<sub>4</sub> plants that use different mechanisms for decarboxylation in bundle sheath cells. Work with isolated cells and protoplasts has provided further information about the location of photosynthetic reactions. Many advances in knowledge have been made from the discoveries of Dr. Hatch and his research group. This work has influenced fields ranging from basic biochemistry and plant physiology to plant molecular biology and agriculture. He is one of the leaders in the field of plant biochemistry.

In recent research Dr. Hatch has elaborated on the detailed mechanism of C<sub>4</sub> acid decarboxylation in bundle sheath cells, provided quantitative information about the unique permeability characteristics of the mesophyll-bundle sheath cell interface to metabolites and carbon dioxide, and improved understanding of the nature of the inorganic carbon pool that develops in bundle sheath cells. In a recent article, Dr. Hatch said that in the past plant biochemists tended to be the poor relations of the biochemical disciplines, following them with 'me too' types of studies. However, nowadays, one can find plant biochemists at the leading edge, with discoveries of novel enzymes and new regulatory mechanisms. Besides the discovery of the C<sub>4</sub> pathway itself, subsequent resolution of the C<sub>4</sub> process has led to several novel and important findings of wide biochemical interest.