(様式	7)

Title of dissertation									
STUDY ON	MECHANISM AN	ID APPLICATIO	N OF	NOVEL	REAC	TIVE	OXYGEN		
CHEMILUMINESCENCE SYSTEM BASED ON NANOPARTICLES									
RONPAKU Fellow									
Name	XIANGNAN DOU								
Position	Research assistant	search assistant		ID No.		R11607			
Department Chemistry department									
Institution	Tsinghua University		Nation	ality	China				
Japanese Advisor									
Name	KATSUMI UCHIYAN	ЛА							
Position	Professor	Institution	Tokyo Metropolitan University						

Chemiluminescence is process when the electronically excited product of a chemical reaction relaxes to its ground state with emission of photons. CL have advantages for applications in analytical chemistry, such as high sensitivity, wide linear range, simple and inexpensive instrumentation, low background noise.

Reactive oxygen species (ROS) is a collective term of oxygen free radicals and molecule, which contain one or more unpaired electrons. The presence of unpaired electrons generally imparts a higher reactivity to the free radicals. ROS mainly include an excited state of oxygen molecules, ie, singlet oxygen molecules ($^{1}O_{2}$), three kinds of oxygen-containing free radicals, namely superoxide anion radical ($^{\circ}O_{2}^{-}$), hydroxyl radical ($^{\circ}OH$) and hydroperoxy radical ($^{HO}O_{2}^{-}$); nonradicals that are either oxidizing agents that are easily converted into radicals, such as hydrogen peroxide ($^{H}_{2}O_{2}$), lipid peroxide (ROOH), HOCl, ozone (O_{3}), peroxynitrite (ONOO⁻).

Reactive oxygen species can generate electronically excited products, which emit the weak CL during their decay to the ground state. It is difficult to detect the light emission directly by CL techniques because of the ultra-weak CL emission from ROS. The emphasis of this article is on the development of novel reactive oxygen CL system based on nanoparticles. The mechanism and the potential application of the established CL system are investigated. The main contents in our work contains as follows:

(1) Firstly, chapter 1 introduced the concept of chemiluminescence and reactive oxygen species. The classification, generation and detection of ROS, the reactive oxygen chemiluminescence system including chemiluminescence from oxidation of lumiol by reactive oxygen species and hydrogen peroxide- based chemiluminescence system are reviewed.

(2) Chapter 2 developed a novel synthetic method for fluorescent carbon nanoparticles (FCNs) using acetic acid (AC) as carbon precursor. The released heat was produced during the reaction between water and P₂O₅, which promote the carbonization reaction besides vaporizing the AC. It was noted that the FCNs exhibited λ_{ex} -independent fluorescent feature, which was very different with those of previously reported carbon dots. The FCNs are the diffunctional CL reagent molecule for H₂O₂-based chemiluminescence system because of its oxidation and sensitizer roles in the reaction with luminol, NaHCO₃ and NaHSO₃.

(3) Chapter 3 demonstrated strong chemiluminescence (CL) of nitrogen doped carbon dots (N-CDs)

due to hydroxyl radical ('OH) induced electron-hole transition in N-CDs. The introduction of N-CDs improved the utilization of H_2O_2 and drastically enhanced the generation of 'OH. A pre-mixed NCDs/H₂O₂ solution was utilized for selective quantification of Fe²⁺ in solution via CL-emission. The CL intensity of the system is dependent on the concentration of Fe²⁺. The N-CDs/H₂O₂ system enabled the detection of Fe²⁺ as low as 1×10^{-9} M with a linear dynamic range of 1.0×10^{-9} - 1.0×10^{-6} M. Significantly, no interference was observed when a mixed solution of Fe²⁺ and other cations such as Al³⁺, Fe³⁺, or Cr³⁺ were introduced to N-CDs/H₂O₂. The CL method have been applied to practical evaluation of N-CDs/H₂O₂ system for detection of Fe²⁺ in tap, lotus pond, and canal water samples.

(4) In chapter 4, we demonstrate the promising capability of molybdenum disulfide-quantum dots (MoS₂-QDs) for generation of ROS, which leads to enhance chemiluminescence. We explored that hydroxyl radicals activate MoS₂-QDs and generate active catalytic sites on its surface. The activated MoS₂-QDs then generate ROS such as, hydroxyl radical ('OH), superoxide radical ('O₂') and singlet oxygen ($^{1}O_{2}$) in sufficient quantity. The MoS₂-QDs provide a new pathway for ROS generation at whole pH-range, which effectively degrade the organic pollutants and can be use in chemo-dynamic therapy.

