An Introduction to Catalysis and Surface Science

Science dialogue with the students of Tsuru high school in Yamanashi prefecture.

Dr. Mathias Laurin

Research Centre for Spectrochemistry
Graduate School of Science
The University of Tokyo
Hongo, 7-3-1 Bunkyo-ku,
Tokyo 113-0033, Japan

12 June 2007
Table of Contents

Introduction

Catalysis
 What is catalysis?
 Homogeneous or heterogeneous catalysis
 Example of heterogeneous catalysis
 Ingeneering?

Surface Science
 Complex surfaces
 Complex reactions at complex surfaces

Intelligent materials
 Windows
 Nanotechnologies
Outline

Introduction

Catalysis
What is catalysis?
Homogeneous or heterogeneous catalysis
Example of heterogeneous catalysis
Ingeneering?

Surface Science
Complex surfaces
Complex reactions at complex surfaces

Intelligent materials
Windows
Nanotechnologies

Dr. Mathias Laurin
An Introduction to Catalysis and Surface Science
Location of Europe
Satellite view of Europe
Dijon, where I was born...
Dijon, where I was born...
... and where I studied

Université de Bourgogne
DEUG Biologie organic chemistry
Licence de Chimie inorganic chemistry
Maîtrise Matériaux materials science
DEA Chimie-physique materials science and physical chemistry
... and where I studied

Université de Bourgogne

DEUG Biologie organic chemistry

Licence de Chimie inorganic chemistry

Maîtrise Matériaux materials science

DEA Chimie-physique materials science and physical chemistry
... and where I studied

Université de Bourgogne
DEUG Biologie organic chemistry
Licence de Chimie inorganic chemistry
Maîtrise Matériaux materials science
DEA Chimie-physique materials science and physical chemistry
... and where I studied

Université de Bourgogne
DEUG Biologie organic chemistry
Licence de Chimie inorganic chemistry
Maîtrise Matériaux materials science
DEA Chimie-physique materials science and physical chemistry
From chemistry to materials science

Pharmacy, food, petrochemicals...
From chemistry to materials science

Pharmacy, food, petrochemicals... Environment, minerals, solid state...
From chemistry to materials science

Pharmacy, food, petrochemicals...

Environment, minerals, solid state...

Plastics, metallurgy, ceramics, polymers...
Chemometrics at the Katholieke Universiteit Nijmegen

Applying artificial intelligence...

The Sim’s

Kasparov vs.
Deep Blue
Chemometrics at the Katholieke Universiteit Nijmegen

Applying artificial intelligence...

The Sim’s

Kasparov vs. Deep Blue

MRI Brain tumor

... to biology and chemistry.
Berlin
Fritz-Haber-Institut der Max-Plank-Gesellschaft

An Introduction to Catalysis and Surface Science
Erlangen: Building a UHV apparatus
The University of Tokyo
Outline

Introduction

Catalysis
 What is catalysis?
 Homogeneous or heterogeneous catalysis
 Example of heterogeneous catalysis
 Ingeneering?

Surface Science
 Complex surfaces
 Complex reactions at complex surfaces

Intelligent materials
 Windows
 Nanotechnologies
What is catalysis?

All chemical processes in biology and chemistry rely on catalysis.

In a (bio)chemical process, catalysis
 ▶ modifies the kinetics for the reaction;
 ▶ modifies the pathway of the reaction;
 ▶ tunes a reaction toward a specific product.

The catalyst will modify the way the reaction if performed but will be involved in neither reactants nor products.
What is catalysis?

All chemical processes in biology and chemistry rely on catalysis.

In a (bio)chemical process, catalysis

- modifies the kinetics for the reaction;
- modifies the pathway of the reaction;
- tunes a reaction toward a specific product.

The catalyst will modify the way the reaction if performed but will be involved in neither reactants nor products.
What is catalysis?

All chemical processes in biology and chemistry rely on catalysis.

In a (bio)chemical process, catalysis

- modifies the kinetics for the reaction;
- modifies the pathway of the reaction;
- tunes a reaction toward a specific product.

The catalyst will modify the way the reaction if performed but will be involved in neither reactants nor products.
What is catalysis?

All chemical processes in biology and chemistry rely on catalysis.

In a (bio)chemical process, catalysis

► modifies the kinetics for the reaction;
► modifies the pathway of the reaction;
► tunes a reaction toward a specific product.

The catalyst will modify the way the reaction if performed but will be involved in neither reactants nor products.
What is catalysis?

All chemical processes in biology and chemistry rely on catalysis.

In a (bio)chemical process, catalysis

▶ modifies the kinetics for the reaction;
▶ modifies the pathway of the reaction;
▶ tunes a reaction toward a specific product.

The catalyst will modify the way the reaction if performed but will be involved in neither reactants nor products.
What is catalysis?

All chemical processes in biology and chemistry rely on catalysis.

In a (bio)chemical process, catalysis

- modifies the kinetics for the reaction;
- modifies the pathway of the reaction;
- tunes a reaction toward a specific product.

The catalyst will modify the way the reaction if performed but will be involved in neither reactants nor products.
The phrase catalysis was coined by Jöns Jakob Berzelius who in 1835 was the first to note that certain chemicals speed up a reaction. Other early chemists involved in catalysis were Alexander Mitscherlich who in 1831 referred to contact processes and Johann Wolfgang Döbereiner who spoke of contact action and whose lighter based on hydrogen and a platinum sponge became a huge commercial success in the 1820s. In the 1880s, Wilhelm Ostwald at Leipzig University started a series of systematic investigations into reactions that were catalyzed by the presence of acids and bases, and found both that chemical reactions occur at finite rates, and that these rates can be used to determine the strengths of acids and bases. For this work, Ostwald was awarded the 1909 Nobel Prize in Chemistry.
The phrase catalysis was coined by Jöns Jakob Berzelius who in 1835 was the first to note that certain chemicals speed up a reaction. Other early chemists involved in catalysis were Alexander Mitscherlich who in 1831 referred to contact processes and Johann Wolfgang Döbereiner who spoke of contact action and whose lighter based on hydrogen and a platinum sponge became a huge commercial success in the 1820s. In the 1880s, Wilhelm Ostwald at Leipzig University started a series of systematic investigations into reactions that were catalyzed by the presence of acids and bases, and found both that chemical reactions occur at finite rates, and that these rates can be used to determine the strengths of acids and bases. For this work, Ostwald was awarded the 1909 Nobel Prize in Chemistry.
The phrase catalysis was coined by Jöns Jakob Berzelius who in 1835 was the first to note that certain chemicals speed up a reaction. Other early chemists involved in catalysis were Alexander Mitscherlich who in 1831 referred to contact processes and Johann Wolfgang Döbereiner who spoke of contact action and whose lighter based on hydrogen and a platinum sponge became a huge commercial success in the 1820s. In the 1880s, Wilhelm Ostwald at Leipzig University started a series of systematic investigations into reactions that were catalyzed by the presence of acids and bases, and found both that chemical reactions occur at finite rates, and that these rates can be used to determine the strengths of acids and bases. For this work, Ostwald was awarded the 1909 Nobel Prize in Chemistry.
The phrase catalysis was coined by Jöns Jakob Berzelius who in 1835 was the first to note that certain chemicals speed up a reaction. Other early chemists involved in catalysis were Alexander Mitscherlich who in 1831 referred to contact processes and Johann Wolfgang Döbereiner who spoke of contact action and whose lighter based on hydrogen and a platinum sponge became a huge commercial success in the 1820s. In the 1880s, Wilhelm Ostwald at Leipzig University started a series of systematic investigations into reactions that were catalyzed by the presence of acids and bases, and found both that chemical reactions occur at finite rates, and that these rates can be used to determine the strengths of acids and bases. For this work, Ostwald was awarded the 1909 Nobel Prize in Chemistry.
The phrase catalysis was coined by Jöns Jakob Berzelius who in 1835 was the first to note that certain chemicals speed up a reaction. Other early chemists involved in catalysis were Alexander Mitscherlich who in 1831 referred to contact processes and Johann Wolfgang Döbereiner who spoke of contact action and whose lighter based on hydrogen and a platinum sponge became a huge commercial success in the 1820s. In the 1880s, Wilhelm Ostwald at Leipzig University started a series of systematic investigations into reactions that were catalyzed by the presence of acids and bases, and found both that chemical reactions occur at finite rates, and that these rates can be used to determine the strengths of acids and bases. For this work, Ostwald was awarded the 1909 Nobel Prize in Chemistry.
Homogeneous or heterogeneous catalysis

Different **types of catalysts**:

Homogeneous catalysts catalyst, reactants and products in the same phase (e.g. all liquids).

Heterogeneous catalysts catalyst in a separate phase (e.g. solid catalyst of a gaseous reaction).

Obvious advantage of heterogeneous catalysts: the homogeneous catalysts needs to be removed after the reaction is performed!
Homogeneous or heterogeneous catalysis

Different types of catalysts:

Homogeneous catalysts catalyst, reactants and products in the same phase (e.g. all liquids).

Heterogeneous catalysts catalyst in a separate phase (e.g. solid catalyst of a gaseous reaction).

Obvious advantage of heterogeneous catalysts: the homogeneous catalysts needs to be removed after the reaction is performed!
Homogeneous or heterogeneous catalysis

Different types of catalysts:

Homogeneous catalysts catalyst, reactants and products in the same phase (e.g. all liquids).

Heterogeneous catalysts catalyst in a separate phase (e.g. solid catalyst of a gaseous reaction).

Obvious advantage of heterogeneous catalysts: the homogeneous catalysts needs to be removed after the reaction is performed!
Homogeneous or heterogeneous catalysis

Different types of catalysts:

Homogeneous catalysts catalyst, reactants and products in the same phase (e.g. all liquids).

Heterogeneous catalysts catalyst in a separate phase (e.g. solid catalyst of a gaseous reaction).

Obvious **advantage of heterogeneous catalysts**: the homogeneous catalysts needs to be removed after the reaction is performed!
Homogeneous or heterogeneous catalysis

Different types of catalysts:

Homogeneous catalysts catalyst, reactants and products in the same phase (e.g. all liquids).

Heterogeneous catalysts catalyst in a separate phase (e.g. solid catalyst of a gaseous reaction).

Obviously advantage of heterogeneous catalysts: the **homogeneous catalysts** needs to be **removed** after the reaction is performed!
Real-world example

Two sunny days on Beijing

and Los Angeles
Car exhaust system...

Three main reactions are being catalysed at the same time

- \(2 \text{CO}(g) + \text{O}_2(g) \rightarrow 2 \text{CO}_2(g)\)
- \(2 \text{NO}(g) + 2 \text{CO}(g) \rightarrow \text{N}_2(g) + 2 \text{CO}_2(g)\)
- \(\text{C}_6\text{H}_6(g) + 7\frac{1}{2} \text{O}_2 \rightarrow 6 \text{CO}_2(g) + 3 \text{H}_2\text{O}(l)\)
Car exhaust system...

Three main reactions are being catalysed at the same time

- \(2CO(g) + O_2(g) \rightarrow 2CO_2(g)\)
- \(2NO(g) + 2CO(g) \rightarrow N_2(g) + 2CO_2(g)\)
- \(C_6H_6(g) + 7\frac{1}{2}O_2 \rightarrow 6CO_2(g) + 3H_2O(l)\)
... and the catalyst itself

Real catalyst

eg: 3-way car exhaust system

Pd/(Ce,Zr)O/Al₂O₃, Martinez-Arias et al., J. Catal. 204, 292 (2001)
Ingeneering

Do you want to improve its performance?

Typically, heterogeneous catalysis is a complex process

1. take an old one
2. change a few of its properties
3. try the new catalyst
4. try 100+ new catalysts
5. sell the best one
Do you want to improve its performance?

- take an old one
- change a few of its properties
- try the new catalyst
- try 100+ new catalysts
- sell the best one
Do you want to improve its performance?
Typically, heterogeneous catalysis is a complex process

1. take an old one
2. change a few of its properties
3. try the new catalyst
4. try 100+ new catalysts
5. sell the best one
Do you want to improve its performance?

Typically, heterogeneous catalysis is a complex process

1. take an old one
2. change a few of its properties
3. try the new catalyst
4. try 100+ new catalysts
5. sell the best one
Do you want to improve its performance?
Typically, heterogeneous catalysis is a complex process

1. take an old one
2. change a few of its properties
3. try the new catalyst
4. try 100+ new catalysts
5. sell the best one
What is catalysis?
Homogeneous or heterogeneous catalysis
Example of heterogeneous catalysis
Ingeneering?

Do you want to improve its performance?
Typically, heterogeneous catalysis is a complex process

1. take an old one
2. change a few of its properties
3. try the new catalyst
4. try 100+ new catalysts
5. sell the best one
Do you want to improve its performance?

Typically, heterogeneous catalysis is a complex process

1. take an old one
2. change a few of its properties
3. try the new catalyst
4. try 100+ new catalysts
5. sell the best one
And what if...

... we could understand what happens at this surface?
Conclusion

And what if…

… we could understand what happens at this surface?
Introduction

Catalysis
 What is catalysis?
 Homogeneous or heterogeneous catalysis
 Example of heterogeneous catalysis
 Ingeneering?

Surface Science
 Complex surfaces
 Complex reactions at complex surfaces

Intelligent materials
 Windows
 Nanotechnologies
Studying surfaces

Because not only the chemical reactions are complex but the surface itself is!

(e.g. Si)
Studying surfaces

Because not only the chemical reactions are complex but the surface itself is!

(e.g. Si)
(e.g. Au)

Very simple surfaces and realistic surfaces!
Complex surfaces

(e.g. Au)

Very simple surfaces and realistic surfaces!
Studying complex reactions at complex surfaces?

... or breaking the problem into pieces

Work under vacuum, use simpler surfaces with known properties, and simple reaction...
Studying complex reactions at complex surfaces?

... or breaking the problem into pieces

Work under *vacuum*, use simpler surfaces with known properties, and simple reaction...
Studying complex reactions at complex surfaces?

... or breaking the problem into pieces

Work under vacuum, use simpler surfaces with known properties, and simple reaction...
Outline

Introduction

Catalysis
What is catalysis?
Homogeneous or heterogeneous catalysis
Example of heterogeneous catalysis
Ingeneering?

Surface Science
Complex surfaces
Complex reactions at complex surfaces

Intelligent materials
Windows
Nanotechnologies
Self-cleaning materials

A window covered with an invisible coating of catalyzer which destroys the organic dirt as it is deposited.

from St. Gobain
Energy savings

Mirror or window?

from the Windows and Daylighting Group at Lawrence Berkeley National Lab.
Dr. Mathias Laurin

An Introduction to Catalysis and Surface Science

CPU chip

CPU chip layout based on surface science

AMD X2 3600
The nanocar

Prof. James Tour’s nanocar, Rice University
Acknowledgements

- Fritz-Haber-Institut, F. A. Universität
 - Prof. Dr. Libuda
 - Prof. Dr. Dr. Freund
 - A. Desikusumastuti

- The University of Tokyo
 - Dr. H. Kondoh
 - H. Ariga, R. Kohda, J. Fujimori

- Japanese Society for the Promotion of Science and the Science dialogue program

- Tsuru High School, Yamanashi prefecture and Ms. M. Komiya

- Wikipedia (most of the pictures in this presentation)