An Introduction to Catalysis and Surface Science Science dialogue with the students of Tsuru high school in Yamanashi prefecture.

Dr. Mathias Laurin

Research Centre for Spectrochemistry Graduate School of Science The University of Tokyo Hongo, 7-3-1 Bunkyo-ku, Tokyo 113-0033, Japan

12 June 2007

Table of Contents

Introduction

Catalysis

What is catalysis?

Homogeneous or heterogeneous catalysis

Example of heterogeneous catalysis

Ingeneering?

Surface Science

Complex surfaces

Complex reactions at complex surfaces

Intelligent materials

Windows

Nanotechnologies

Outline

Introduction

Catalysis

What is catalysis?

Homogeneous or heterogeneous catalysis

Example of heterogeneous catalysis

Ingeneering?

Surface Science

Complex surfaces

Complex reactions at complex surfaces

Intelligent materials

Windows

Nanotechnologies

Location of Europe

Satellite view of Europe

Dijon, where I was born...

Dijon, where I was born...

. . . and where I studied

Université de Bourgogne
DEUG Biologie organic chemistry
Licence de Chimie inorganic chemistry
Maîtrise Matériau materials science
DEA Chimie-physique materials science and physical chemistry

... and where I studied

Université de Bourgogne
DEUG Biologie organic chemistry
Licence de Chimie inorganic chemistry
Maîtrise Matériau materials science
DEA Chimie-physique materials science and physical chemistry

... and where I studied

Université de Bourgogne
DEUG Biologie organic chemistry
Licence de Chimie inorganic chemistry
Maîtrise Matériau materials science
DEA Chimie-physique materials science and physical chemistry

... and where I studied

Université de Bourgogne
DEUG Biologie organic chemistry
Licence de Chimie inorganic chemistry
Maîtrise Matériau materials science
DEA Chimie-physique materials science and
physical chemistry

From chemistry to materials science

Pharmacy, food, petrochemicals. . .

From chemistry to materials science

Pharmacy, food, petrochemicals...

Environment, minerals, solid state...

From chemistry to materials science

Pharmacy, food, petrochemicals. . .

Environment, minerals, solid state...

Plastics, metallurgy, ceramics, polymers...

Chemometrics at the Katholieke Universiteit Nijmegen

Applying artificial intelligence...

The Sim's

Kasparov vs. Deep Blue

Chemometrics at the Katholieke Universiteit Nijmegen

Applying artificial intelligence...

The Sim's

Kasparov vs. Deep Blue

MRI Brain tumor ... to biology and chemistry.

Berlin

Fritz-Haber-Institut der Max-Plank-Gesellschaft

Erlangen: Building a UHV apparatus

The University of Tokyo

Outline

Introduction

Catalysis

What is catalysis?

Homogeneous or heterogeneous catalysis

Example of heterogeneous catalysis

Ingeneering?

Surface Science

Complex surfaces

Complex reactions at complex surfaces

Intelligent materials

Windows

Nanotechnologies

All chemical processes in biology and chemistry rely on catalysis.

In a (bio)chemical process, catalysis

- modifies the kinetics for the reaction;
- modifies the pathway of the reaction;
- tunes a reaction toward a specific product.

All chemical processes in biology and chemistry rely on catalysis.

In a (bio)chemical process, catalysis

- modifies the kinetics for the reaction;
- modifies the pathway of the reaction;
- tunes a reaction toward a specific product.

All chemical processes in biology and chemistry rely on catalysis.

In a (bio)chemical process, catalysis

- modifies the kinetics for the reaction;
- modifies the pathway of the reaction;
- tunes a reaction toward a specific product.

All chemical processes in biology and chemistry rely on catalysis.

In a (bio)chemical process, catalysis

- modifies the kinetics for the reaction;
- modifies the pathway of the reaction;
- tunes a reaction toward a specific product.

All chemical processes in biology and chemistry rely on catalysis.

In a (bio)chemical process, catalysis

- modifies the kinetics for the reaction;
- modifies the pathway of the reaction;
- tunes a reaction toward a specific product.

All chemical processes in biology and chemistry rely on catalysis.

In a (bio)chemical process, catalysis

- modifies the kinetics for the reaction;
- modifies the pathway of the reaction;
- tunes a reaction toward a specific product.

Different types of catalysts:

Homogeneous catalysts catalyst, reactants and products in the same phase (e.g. all liquids).

Heterogeneous catalysts catalyst in a separate phase (e.g. solid catalyst of a gaseous reaction.

Different types of catalysts:

Homogeneous catalysts catalyst, reactants and products in the same phase (e.g. all liquids).

Heterogeneous catalysts catalyst in a separate phase (e.g. solid catalyst of a gaseous reaction.

Different types of catalysts:

Homogeneous catalysts catalyst, reactants and products in the same phase (e.g. all liquids).

Heterogeneous catalysts catalyst in a separate phase (e.g. solid catalyst of a gaseous reaction.

Different types of catalysts:

Homogeneous catalysts catalyst, reactants and products in the same phase (e.g. all liquids).

Heterogeneous catalysts catalyst in a separate phase (e.g. solid catalyst of a gaseous reaction.

Homogeneous or heterogeneous catalysis

Different types of catalysts:

Homogeneous catalysts catalyst, reactants and products in the same phase (e.g. all liquids).

Heterogeneous catalysts catalyst in a separate phase (e.g. solid catalyst of a gaseous reaction.

Obvious advantage of heterogeneous catalysts: the homogeneous catalysts needs to be removed after the reaction is performed!

Real-world example

Two sunny days on Beijing

Car exhaust system...

Three main reactions are being catalysed at the same time

$$ightharpoonup 2CO_{(g)} + O_{2(g)} o 2CO_{2(g)}$$

$$ightharpoonup 2NO_{(g)} + 2CO_{(g)} \rightarrow N_{2(g)} + 2CO_{2(g)}$$

$$C_6H_{6(g)} + 7\frac{1}{2}O_2 \rightarrow 6CO_{2(g)} + 3H_2O_{(I)}$$

Car exhaust system...

Three main reactions are being catalysed at the same time

$$ightharpoonup 2CO_{(g)} + O_{2(g)} o 2CO_{2(g)}$$

$$ightharpoonup 2NO_{(g)} + 2CO_{(g)} \rightarrow N_{2(g)} + 2CO_{2(g)}$$

$$C_6H_{6(g)} + 7\frac{1}{2}O_2 \rightarrow 6CO_{2(g)} + 3H_2O_{(I)}$$

.. and the catalyst itself

Do you want to improve its performance?

Typically, heterogeneous catalysis is a complex process

- 1. take an old one
- 2. change a few of its properties
- 3. try the new catalyst
- 4. try 100+ new catalysts
- 5. sell the best one

- 1. take an old one
- 2. change a few of its properties
- 3. try the new catalyst
- 4. try 100+ new catalysts
- 5. sell the best one

- 1. take an old one
- 2. change a few of its properties
- 3. try the new catalyst
- 4. try 100+ new catalysts
- 5. sell the best one

- 1. take an old one
- 2. change a few of its properties
- 3. try the new catalyst
- 4. try 100+ new catalysts
- 5. sell the best one

- 1. take an old one
- 2. change a few of its properties
- 3. try the new catalyst
- 4. try 100+ new catalysts
- 5. sell the best one

- 1. take an old one
- 2. change a few of its properties
- 3. try the new catalyst
- 4. try 100+ new catalysts
- 5. sell the best one

- 1. take an old one
- 2. change a few of its properties
- 3. try the new catalyst
- 4. try 100+ new catalysts
- 5. sell the best one

Conclusion

And what if...

... we could understand what happens at this surface?

Conclusion

And what if...

... we could understand what happens at this surface?

Outline

Introduction

Catalysis

What is catalysis?

Homogeneous or heterogeneous catalysis

Example of heterogeneous catalysis

Ingeneering?

Surface Science

Complex surfaces

Complex reactions at complex surfaces

Intelligent materials

Windows

Nanotechnologies

Studying surfaces

Because not only the chemical reactions are complex but the surface itself is!

(e.g. Si)

Studying surfaces

Because not only the chemical reactions are complex but the surface itself is!

Complex surfaces

Very simple surfaces and realistic surfaces!

Complex surfaces

Very simple surfaces and realistic surfaces!

Studying complex reactions at complex surfaces?

... or breaking the problem into pieces

Work under vacuum, use simpler surfaces with known properties, and simple reaction...

Studying complex reactions at complex surfaces?

... or breaking the problem into pieces

Work under vacuum, use simpler surfaces with known properties, and simple reaction...

Studying complex reactions at complex surfaces?

... or breaking the problem into pieces

Work under vacuum, use simpler surfaces with known properties, and simple reaction...

Outline

Introduction

Catalysis

What is catalysis?

Homogeneous or heterogeneous catalysis

Example of heterogeneous catalysis

Ingeneering?

Surface Science

Complex surfaces

Complex reactions at complex surfaces

Intelligent materials

Windows

Nanotechnologies

Self-cleaning materials

A window covered with an invisible coating of catalyzer which destroys the organic dirt as it is deposited.

from St. Gobain

Energy savings

Mirror or window?

from the Windows and Daylighting Group at Lawrence Berkeley National Lab.

CPU chip

CPU chip layout based on surface science

The nanocar

Prof. James Tour's nanocar, Rice University

Acknowledgements

- Fritz-Haber-Institut, F. A. Universität
 - Prof. Dr. Libuda
 - Prof. Dr. Dr. Freund
 - A. Desikusumastuti
- The University of Tokyo
 - Dr. H. Kondoh
 - H. Ariga, R. Kohda, J. Fujimori
- Japanese Society for the Promotion of Science and the Science dialogue program
- Tsuru High School, Yamanashi prefecture and Ms. M. Komiya
- Wikipedia (most of the pictures in this presentation)

