Outline of survey

ATP synthase (FoF1) is one of the most ubiquitous, abundant, and unusual proteins on the earth. It synthesizes ATP by using a downhill proton flow across membrane. Protons drive the rotation of the central shaft which then sequentially alternate the conformations of the chemical catalytic sites of ATP synthesis. To know the details of this machine, we have to know its atomic structure. This challenge has been rejected for ten years probably because of the rotational isomerization of the enzyme. Here, we have invented the methods to generate a homogeneous molecules in terms of the rotational positions of the shaft. Also, we plan to visualize the proton-driven rotation of ATP synthase. Another interesting aspect of this enzyme is regulation. Without fuel, this enzyme wastes ATP. We have found that one of subunit, epsilon, may prevent this ATP hydrolysis like a disk brake of the rotation. This regulation will be clarified more.

Expected results

For the first time, we can tell one of the most important processes of life, energy production, in molecular terms. This will provide a good reference for other biological processes and man-made nano-machines.

References by the principal researcher

Hiroshi Ueno, Toshiharu Suzuki, Kazuhiko Kinosita, Jr., and Masasuke Yoshida