Summary of Research Project Results under JSPS FY2001
"Research for the Future Program"

1.Research Institution Kyoto University
2.Research Area Physical and Engineering Sciences
3.Research Field Highly Efficient Use of Energy and Reduction of its Environmental Impact
4.Term of Project FY 1997 〜 FY 2001
5.Project Number 97P01001
6.Title of Project Production- and Utilization-Technology of Hydrogen Aiming at the Hydrogen Energy Society

7.Project Leader
Name Institution,Department Title of Position
Masahiro, Shioji Kyoto University, Graduate School of Energy Science Professor

8.Core Members

Names Institution,Department Title of Position
Takeshi, Yao Kyoto University, Graduate School of Energy Science Professor
Atsushi, Tsutsumi University of Tokyo, Graduate School of Engineering Associate Professor
Mitsuo, Koshi University of Tokyo, Graduate School of Engineering Professor

9.Summary of Research Results

 Based on the consideration into the most effective use of thermal energy, total energy system utilizing hydrogen as an energy carrier is proposed to establish the advanced society for protecting environment. This project is involved in four research tasks which meet the demand for a wide use of hydrogen fuel into the effective power plant and for a large-scale hydrogen-supply system materialized by water or renewable resources. Their outcomes are summarized as follows:
(1) Feasibility of a compact high-speed hydrogen engine was assessed by the experiments of performance and combustion characteristics. The optimal design and operating conditions was estimated based on exergy analysis and CFD simulation. Further development for hydrogen engine was demonstrated using a new prototype engine with rhombic link Z-crankshaft mechanism.
(2) For high-temperature steam electrolysis with a lower decomposition voltage and a faster reaction, novel technologies were investigated to develop novel solid electrolyte materials with perovskite related structure, stable and reactive materials with mixed conductive property, and synthesizing reactions of functional ceramics from aqueous solutions.
(3) Thermochemical UT-3 cycle of water decomposition was demonstrated to produce hydrogen by utilizing thermal energy at low temperatures. Also, the thermochemical recuperative hydrogen production by steam gasification was proposed to improve the overall thermal efficiency in the utilization of the carbonaceous resources. The fundamental research on the rapid steam gasification reaction of brown coal and biomass was conducted to study the reactivity of materials with steam.
(4) Effects of additives on the characteristics of H2 combustion were investigated. Rate constants of the H +O2 + M = HO2 +M reaction were determined for M = H2O , CO2 , N2 , O2 , and Ar. Preferential diffusion effect at the hydrogen wrinkled flame was confirmed to estimate turbulent burning velocity

10.Key Words

(1)Hydrogen Energy、(2)Engine、(3)Hydrogen Mixing Fuel
(4)High-Temperature Steam Electrolysis、(5)Ceramic Materials、(6)Thermochemical Cycle
(7)Steam Reforming、(8)Chemical Reaction、(9)Turbulent Combustion