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1. HERFEOHERHN

For FY2013, we had planned:

(1) to complete the characterization of novel transcripts identified from our analyses, now published (Fort A. et al.,
Nat. Genet., 2014: doi:10.1038/ng.2965), where we described of a large set of novel transcripts named NASTs
(Non-Annotated-Stem-Transcripts).

(2) to pursue the development of a new technology allowing the detection of specific interactions between ncRNA
and chromatin loci. This tool is badly needed to understand the molecular mechanisms of ncRNA implicated in
locus-specific chromatin modifications, part of global gene regulatory processes.

(3) to deepen our understanding of the mechanisms of action of some specific novel ncRNAs, in particular of

NASTs associated with enhancer regions and retrotransposon elements.

2. HIROER®IRR

Lost of function attempts on NASTs were conducted using multiple types of reagents (i.e. short interfering RNAs,
siRNA and lock nucleic acids antisense oligos, LNA) in order to obtain a reproducible knock-down of some NASTs
candidates. Following a large experimental effort, screening a total of 77 NASTs with siRNA and another 30 with
antisense LNAs, we have reported for four candidates, direct implication in the genetic regulation of the
maintenance of pluripotency (Figure 1).

We are currently performing over-expression experiments of NAST candidates. 70 NASTs were cloned within and
overexpressed in mouse embryonic stem cells to test for their ability to slow down passive differentiation process,
following LIF removal. 10 of them lead to significant slow down of differentiation, when measuring Nanog
expression. We are currently performing transcriptome wide analyses following overexpression of 6 of these 10
candidates.

We pursue the development of technology for the detection of RNA-chromatin interactions. We aim at finding
optimal conditions for asymmetric ligation of RNA and DNA using home made linker. The goal being to obtain cDNA
linked to fragmented chromatin pieces, which are isolated together only when ncRNAs are retained on the
chromatin. These cDNA/genomic DNA chimeras are then analyzed with next-generation sequencing allowing the
construction of a genome-wide map for RNA/chromatin interactions. Our efforts are currently focused on testing

different crosslinking approaches as well as optimizing the linker sequences. We have collected preliminary
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sequencing data confirming the actual production and detection of RNA/DNA chimeras.
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Figure 1: a. Normalized GFP positive population, adjusted to the mock control (black), quantified by flow cytometry analysis
48h after transient transfection of siRNA at 20nM. Scrambled siRNA (red), siRNAs targeting Nanog and Sox2 (green). b.
Knock-down efficiencies measured by qRT-PCR, scrambled negative control (NC, red). c. gRT-PCR for stemness marker.
Expression values were adjusted to the scrambled negative control (NC). n=3 independent experiments. Error-bars show S-D,

P-values * < 0.05.
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