Title of project	Economic Analysis of Intergenerational Issues
Head Investigator	Noriyuki Takayama, Hitotsubashi University, Institute of Economic Research, Professor
Name	
Abstract of	This project makes both theoretical and empirical analyses of intergenerational issues from an
Research Project	economic point of view. It addresses pension, health care and employment problems in the
	context of the population aging/decline. It clarifies current and future intergenerational situations
Number of	of economic well-beings, examines cohort-by-cohort motivations to mitigate intergenerational
Researchers : 5	conflicts, deepens conceptual understanding of intergenerational equity, and provides a new
Term of	analytical framework to overcome a dilemma between equity and efficiency of intertemporal
Project: 2006–2010	resource allocation. It also conducts the Japanese version of health and retirement studies.

Title of project	Semiconductor Nanowire Electronics by Selective-Area Metal-Organic Vapor Phase Epitaxy
Head Investigator	Takashi Fukui, Hokkaido University, Graduate School of Information Science and Technology,
Name	Professor
Abstract of	In semiconductor nano-technology research and development fields, bottom-up-type fabrication
Research Project	techniques for semiconductor nano-structures have been most intensively investigated to overcome the technological limits of conventional top-down-type techniques used in the present
	silicon LSI industries. The purpose of this project is to develop a fabrication technology for semiconductor nanowires using our unique selective-area metal-organic vapor phase epitaxial
Number of	growth technique, which is a combination of the bottom-up-type fabrication techniques with the
Researchers : 5	top-down-type ones. The semiconductor nanowires have been attracted much attention as building blocks for future semiconductor nano-electronics because of possible high integration of the nano-devices and novel one-dimensional electronic properties. The realization of
Term of	"semiconductor nanowire electronics" by our project possibly leads to a drastic technological
Project: 2006–2010	brake-through in a future semiconductor industry.

Title of project	Study of quark-gluon structure of hadrons with a large polarized target
Head Investigator	Takahiro Iwata, Yamagata University, Faculty of Science, Associate Professor
Name	Takanno Iwata, Tamagata University, Faculty of Science, Associate Professor
Abstract of	It has been believed for a long time that the origin of the nucleon spin is the quark spin. Recent
Research Project	experiments have made it clear that the contribution of the quark spin to the nucleon spin is less
	important. The question about the origin of the nucleon spin still remains. According to QCD
Number of	theory which describes interactions of quarks, the gluon spin may play an important role to give
Researchers : 4	the nucleon spin. We study the contribution of the gluon spin to the nucleon spin in the
Term of	international collaboration, COMPASS, at CERN with a polarized target and a high energy
Project: 2006–2009	polarized beam.

Title of project	Strongly correlated quantum phase associated with charge fluctuation
Head Investigator Name	Terutaka Goto, Niigata University, Institute of Science and Technology, Professor
Abstract of	Localized spins of magnetic ions embedded in metals interact with conduction electrons. This
Research Project	coupling leads to a "Kondo singlet", where the localized magnetic moment is entirely screened by conduction electrons. After a milestone work of forty years ago by J. Kondo for describing resistivity minimum, the Kondo effect revealed remarkable evolution relating to heavy Fermion and anisotropic superconductivity in strongly correlated electron physics. The charge fluctuation associated with localized electron and ionic motion may also couple to the conduction electrons. This coupling dominated by the charge fluctuation leads to quadrupole Kondo and
Number of	multi-channel Kondo effects. In this regime, there are expected exotic phenomena of strongly
Researchers : 5	correlated quantum phases, which are considerably different from that in the spin dominated Kondo effect. In the present research, we investigate non-Kramers doublet of localized 4f-electron system, off-center oscillator in clathrate compound and vacancy orbital in crystalline silicon. And we pursue strongly correlated quantum phases due to coupling of the charge fluctuation to conduction (valence) electrons. The charge fluctuations associated with 4f-electron, off-center oscillator and vacancy possess distinct symmetry and thereby couple to
Term of	elastic strains of ultrasonic waves. Employing the ultrasonic measurements, we study the
Project: 2006–2010	strongly correlated quantum phases due to the charge fluctuations.

Title of project	Formation of Quark Matter and Photon Physics
Head Investigator	Tom Subitate Himschime Heivereitz Cuschuste School of Science Dusfasson
Name	Toru Sugitate, Hiroshima University, Graduate School of Science, Professor
Abstract of	The LHC accelerator at CERN will open a new window to study de-confined quark dynamics at
Research Project	extreme conditions such as a large quantity of quarks and gluons in a boiling soup at temperature
	of about 10 trillion degrees under a little baryon density. Such a quark soup, which may be
Number of	existed in a few micro-seconds after the Big Bang, can be created by means of a heavy-ion
Researchers : 6	collision injecting its total energy of peta-eV (equivalent with energy one million times the mass
	of a proton at rest) into a tiny volume of nuclear size. Investigating through photon channels on
Term of	how the matter cools down as expanding its volume and finally be materialized, we would
Project: 2006–2010	reveal the nature of primordial Universe.

Title of project	Qubus Quantum Computer
Head Investigator	Yoshihisa Yamamoto, Principles of Informatics Research Division, Professor
Name	Toshinisa Tamamoto, Ffincipies of informatics Research Division, Fforessor
Abstract of	We will study the qubus quantum computer consisting of cavity QED nodes connected by
Research Project	coherent state communication bus. The first experimental system is a single ¹⁹ F donor impurity
	embedded in a ZnSe microcavity. A donor bound electron (spin) forms a two-level system
	(qubit) and, together with a donor bound exciton, a three-level lambda system is provided. This
Number of	matter-qubit in a monolithic microcavity forms a cavity QED node. Alternatively, a single ³¹ P
Researchers : 4	donor is embedded in a monolithic Si microcavity. Those semiconductor cavity QED nodes are
	connected by coherent optical pluses to implement two qubit gates. The second experimental
Term of	system is a Josephson junction flux qubit enclosed in a microwave circuit cavitiy, which is
Project: 2006-2010	connected by coherent microwave pluses.

Title of project	Material Innovation for the Age of Life Science - Creation of Soft and Wet Materials
Head Investigator	I'm D'm Come Halle' la Halme' (a Damika 60 'mar Dafama
Name	Jian Ping Gong, Hokkaido University, Faculty of Science, Professor
Abstract of	In this century of life science, for improving the quality of life, it is imperative to create novel
Research Project	soft and wet materials, which can be really applicable to our body as alternative organs. In order
	to design novel polymer gels having both excellent mechanical properties and rich functions, we
Number of	try to obtain many hints from ordered / complex / hierarchical structure in actual organs, like as
Researchers : 4	blood vessel, cartilage, tendon, etc. We adopt suitable techniques of chemosynthesis and/or
	biosynthesis to create them and investigate their mechanical properties, features of interface, and
Term of	transport phenomena. Then, we also apply them as biomaterials. Finally, we hope to create a
Project: 2006–2010	new scientific field of soft and wet matter in future.

Title of project	Gene Manipulation of Huge DNA by Super Artificial Restriction Enzyme
Head Investigator	Makoto Komiyama, The University of Tokyo, Research Center for Advanced Science and
Name	Technology, Professor
Abstract of	The importance of technology to manipulate huge DNA (e.g., genome DNA) has been rapidly
Research Project	increasing. However, naturally occurring restriction enzymes are insufficient for the purpose. If
	any target gene can be freely cut out of genome DNA and it can be introduced into
	predetermined position of genome DNA, these technologies should show overwhelming effects
Number of	on various fields such as medical care, biotechnology, and species improvements. In this
Researchers : 3	research, DNA cutting technique that we recently developed is further improved, and new
	chemical tools (super artificial restriction enzymes) that can selectively cut huge DNA at the
Term of	desired site are constructed. Furthermore, these tools are used to develop new molecular biology
Project: 2006–2010	and biotechnology that have no limitation in DNA size.

Title of project	Development of environment-conscious synthetic reactions: construction of reaction
	coordinate-response catalyst
Head Investigator	Tsutomu Katsuki, Kyushu University, Graduate School, Faculty of Sciences, Professor
Name	Isutomu Katsuki, Kyushu Oniversity, Oraculate School, Faculty of Sciences, Floressor
Abstract of	Today, most of useful compounds can be synthesized with high selectivity and chemical yield
Research Project	by using high-active reagents and sophisticated catalysts. From the viewpoint of environmental
	conservation, however, introduction of reactions that consume less materials and less energy and
Number of	produce less side products is strongly desired. The aim of this study is to construct a catalyst that
Researchers : 4	can change its structure and function in conjunction with the reaction coordinate of the desired
	reaction, to activate stable but atom efficient reagents such as molecular oxygen and to realize
Term of	highly selective and ecologically benign functionalization that is comparable to biological one in
Project: 2006-2009	any respects.

Title of project	Study of ultra-high speed and ultra low energy consumption system LSI constructed by balanced full CMOS.
Head Investigator Name	Tadahiro Ohmi, Tohoku University, New Industry Creation Hatchery Center, Professor
Abstract of	Information appliances which become the mainstream in the field in information and
Research Project	communication technology in the 21st century essentially require very small, very high
	performance and very low energy consumption system LSI embedded with digital, analog and
	RF (radio frequency) circuits. The purpose of this research is the creation of the over 10GHz
Number of	operation system LSI embedded with digital, analog and RF circuits constructed by the balanced
Researchers : 5	CMOS on the silicon surface using the radical reaction based semiconductor processes
	technologies, such as atomic order flat interface of the gate insulator and the silicon, and the
Term of	drastically decreased series resistance of the source and drain electrode that is three orders of
Project: 2006-2008	magnitude lower than that of the current technology.

Title of project	Next Generation Super High Density Ferroelectric Data Storage Using Scanning Nonlinear
	Dielectric Microscopy Technique
Head Investigator	Yasuo Cho, Tohoku University, Research Institute of Electrical Communication, Professor
Name	Tasuo Cho, Tonoku Oniversity, Research institute of Electrical Communication, Professor
Abstract of	With the advance of information processing technology, the importance of high-density data
Research Project	storage is increasing. Studies on thermal fluctuation predict that magnetic storage, which plays a
	major role in this field, will reach a theoretical limit in the near future, and thus a novel
	high-density storage method is required. Ferroelectrics can hold bit information in the form of
Number of	the electrical polarization direction of individual domains. Moreover, the domain wall of typical
Researchers : 3	ferroelectric materials is as thin as the order of a few lattices, which is favorable for high-density
	data storage. Therefore, we will study next generation ferroelectric high-density data storage
Term of	based on scanning nonlinear dielectric microscopy to achieve the considerable progress towards
Project: 2006–2010	the realization of ferroelectric technology for data storage.

Title of project	Generic Methods for Knowledge-based Semantic and Contextual Processing in Natural
	Language Understanding
Head Investigator	Junichi Tsujii, Graduate School of Information Science and Technology, University of Tokyo,
Name	Professor
Abstract of	Everyday language is inherently intertwined with knowledge and meanings that are not directly
Research Project	observed in surface sequences of words. The same meanings are often expressed by different
	linguistic expressions, while similar expressions sometimes denote very different meanings. The
Number of	project is to develop basic technologies for processing such intricate relationship between
Researchers : 4	language and meanings. In particular, we are interested in bootstrapping approach of knowledge
Term of	and grammar acquisition. A high performance GRID environment for such research will also be
Project: 2006–2010	developed.

Title of project	Sub-10nm hard X-ray focusing and application to nanoscopy/spectroscopy
Head Investigator Name	Kazuto Yamauchi, Osaka University, Graduate School of Engineering, Professor
Abstract of	Advances in synchrotron radiation facilities have been accelerating the progress of various X-ray
Research Project	analysis methods. Nanofocused X-rays are indispensable because they can provide the high spatial resolution and high sensitivity. A focusing system with Kirkpatrick-Baez mirrors is the most promising device from the viewpoints of high efficiency and large aperture. To date, we have established the fabrication system for the hard X-ray mirror, by developing new surface
Number of	figuring and testing methods of nanometer-order accuracy. By using an ultraprecisely figured
Researchers : 5	mirror, we realized sub-50nm hard X-ray focusing. The aim of this project is the realization of sub-10nm hard X-ray focusing. In order to further increase the performance of X-ray mirrors, we are planning to develop new technologies such as at-wavelength metrology and additional
Term of	processing methods. A sub-10nm hard X-ray focusing system will be developed and applied to
Project: 2006-2010	X-ray nanoscopy/spectroscopy.

Title of project	Studies on the mechanism of neural and behavioral sex determination by the <i>Drosophila fruitless</i> gene
Head Investigator Name	Daisuke Yamamoto, Tohoku University, Graduate School of Life Sciences, Professor
Abstract of	The major aim of this study is to establish the causal relationship between a particular gene, its
Research Project	function in the cell and the behavioral outcome at the organismal level. We use Drosophila
	melanogaster as an animal model that allows experimental manipulation of complex behavior.
Number of	In particular, we focus our attention on the <i>fruitless</i> gene, the mutation of which induces
Researchers : 3	male-to-male courtship. We elucidate the entire neural network responsible for the generation of
Term of	sexual behavior. We further explore the molecular basis for the <i>fruitless</i> action in the construction
Project: 2006–2010	of the neural network by identifying the target genes and cofactors of Fruitless.

Title of project	The Mechanism of Intracellular Transport and Kinesin Motors, KIFs : Structure, Function,
	Dynamics and Regulation
Head Investigator	
Name	Nobutaka Hirokawa, University of Tokyo, Graduate School of Medicine, Professor
Abstract of	Cells transport proteins as various kinds of membranous organelles, protein complexes, and
Research Project	mRNA with a large protein complexes along microtubule rails to their own destinations. This
	intracellular transport is fundamental not only for various important cellular functions, but also
	for significant phenomena such as brain wiring, development, higher brain functions, left-right
	determination and suppression of tumorigenesis. In this project we will elucidate structure and
Number of	function of new kinesin superfamily motor proteins, KIFs and their functional significance in a
Researchers : 12	whole body using molecular cell biology and molecular genetics. We will also solve the
	question how KIFs move on the microtubules by biophysics, cryo-electron microscopy and
	X-ray crystallography. Thus, the fundamental problem in life science, the mechanism of
Term of	intracellular transport will be uncovered and we will get insights in causes and pathogenesis of
Project: 2006–2010	related diseases and also design principle of new nano-machines.

Title of project	Mechanism of emergence of new influenza viruses and their control
Head Investigator Name	Yoshihiro Kawaoka, University of Tokyo, Institute of Medical Science, Professor
Abstract of	The spread of H5N1 avian influenza viruses in Asia, Europe, and Africa and their ability to
Research Project	cause fatal infection in humans have raised serious concerns about a global influenza pandemic.
	Although more than 200 people have been infected with H5N1 influenza A viruses, human-to-human transmission is rare. However, once these viruses acquire the ability to efficiently spread among humans, a devastating pandemic is inevitable. In this project, we will therefore study the mechanisms which would support the ability of H5N1 avian influenza virus to efficiently transmit among humans. The information obtained from these studies will be
Number of	critical in the prevention of prevent future pandemics.
Researchers : 2	We reported the isolation of an H5N1 virus from a Vietnamese girl that is resistant to the anti-influenza drug oseltamivir, an inhibitor of viral neuraminidase. This drug has been identified as a crucial measure in the prevention of a pandemic. Thus, we will characterize drug-resistant H5N1 viruses and study the mechanism of their emergence. The data obtained from these studies will provide guidance for determining the appropriate use of neuraminidase inhibitors.
Term of	Finally, we will analyze the packaging mechanism of the influenza viral genome. Understanding
Project: 2006–2010	the means by which virus particles are formed will identify targets for new anti-influenza drugs.

Title of project	Spatiotemporal control of cell functions by Rho GTPases; mechanisms and physiological roles
Head Investigator	Shuh Narumiya, Kyoto University, Graduate School of Medicine, Professor
Name	Shun Naruhiiya, Kyötö Ohiversity, Oraduate School of Medicine, Professor
Abstract of	Cell functions such as adhesion, migration, proliferation and division are regulated by
Research Project	spatiotemporal control of signal transduction pathways and are elicited by reorganization of the
	cytoskeleton such as filamentous actin and microtubules. Rho GTPases are key regulator of
Number of	the cytoskeletal reorganization. In this project, we will focus on actions of Rho GTPases, and
Researchers : 1	elucidate spatiotemporal control mechanisms that operate in the above cell functions. We will
Term of	further investigate both in vitro and in vivo how such control mechanisms are utilized in the
Project: 2006–2010	body, and how their derangement leads to generation of various diseases including cancer.

Title of project	Molecular Clocks to Biological Rhythms
Head Investigator	Hitoshi Okamura, Kobe University, Graduate School of Medicine, Professor
Name	
Abstract of	Space flight in 20th century enabled human to see earth from outside. Primitive organisms
Research Project	appeared on earth got cyclic energy from the sun, and using this cyclicity, they evolved internal
	time system, the biological clock. This system is the basic feature of life even in human. We
	have worked the suprachiasmatic nucleus, the center of biological clock in mammals over the
	past 25 years, and clarified the various aspects of the molecular and cellular mechanisms of
Number of	clock genes in this nucleus. In the present study, we investigate the multidimensional complex
Researchers : 4	structure constituting central oscillator, oscillation conducting systems, and peripheral cellular
	oscillators. "Time" is a bridge between single genes and the living organism as a whole. Further,
	we will try to uncover the clock-related diseases such as sleep-awake disturbances, metabolic
Term of	syndrome and carcinogenesis. We are happy if these trials help to improve the life style in 21^{th}
Project: 2006–2010	century on the wave of biological rhythms.