Title of project	Three-Level Structure of Civil Society and Governance: A Comprehensive Comparative Study
	of Japan, Korea, the United States, Germany, and China
Head Investigator	Yutaka Tsujinaka, University of Tsukuba, Graduate School of Humanities and Social Sciences,
Name	Professor
Abstract of	To successfully formulate and implement policies to create a better society, cooperation of
Research Project	various social actors is essential. Since severe financial situation and changing socio-economic
	environment have prevented the government and political parties from exercising effective
	leadership, the issue of governance, in terms of interactions between political and social actors,
	has attracted much attention. To understand such interactions, we examine the structure of
	Japanese civil society by running a nation-wide survey, and by comparing Japan with the United
Number of	States, Korea, Germany, and China. We also explore the structural pattern of civil society
Researchers : 7	organizations at three levels: traditional autonomous bodies (neighborhood organizations),
	existing social organizations (business and labor organizations and cooperatives), and emerging
	bodies (NGOs and non-profit organizations). This research reconstructs the Western concept of
	civil society. It also offers policy implications regarding local governance with respect to
Term of	ongoing decentralization, as well as for the possibilities of strengthening civil societies in other
Project: 2005-2009	countries through ODAs.

Title of project	An Empirical Study of Life Styles, Norms and Values through the AsiaBarometer
Head Investigator	Takashi Inoguchi, Chuo University, Faculty of Law, Professor
Name	
Abstract of	The project aims at investigating the daily lives of ordinary peoples in Asia through social
Research Project	surveys in East, Southeast, South and Central Asia. The data sets acquired through nationwide
	random sampling and with the same size of 800 will be made accessible to all users as much as
	possible. All these data will be analyzed with local social scientists participating at each stage of
Number of	the project.
Researchers : 9	The primary theoretical angles from which all the data are examined are (1) how much
	developmental momentum is Asia manifesting? (2) how vigorous is Asia's democratizing
Term of	impulse? (3) How strong is Asia's regionalizing imperative? The project tries to answer these
Project: 2005-2008	questions.

Title of project	Spin-isospin responses in nuclei in time-like region by means of exothermic charge-exchange
	reactions
Head Investigator	Hideyuki Sakai, The University of Tokyo, Graduate School of Science, Professor
Name	
Abstract of	Spin-isospin response of nucleus is a unique excitation mode since it is related with mesons in
Research Project	nuclei and consequently it provides valuable information on nuclear forces. So far the research
	has been performed by using endothermic reactions by a stable beam such as (p,n) or (n,p)
	which is inevitably accompanied by a finite momentum transfer to nucleus. Such reactions
Number of	hamper the study of spin-isospin responses in highly excited regions. We will try to overcome
Researchers : 5	this difficulty by using exothermic reactions by an unstable beam such as (12N,12C) or
	(12B,12C). With this new experimental means, we pursue the study of spin-isospin responses in
	the highly excited region, namely in the time-like region. We are aiming to identify new spin
Term of	excitation modes by constructing a high energy resolution spectrometer SHARAQ dedicated to
Project: 2005–2009	the exothermic reactions by unstable beams.

Title of project	Study of Quantum Critical Phenomena at Micro Kelvin Temperatures
Head Investigator	Haruhiko Suzuki, Kanazawa University, Graduate School of Natural Science and Technology,
Name	Professor
Abstract of	A phase transition which occurs at 0 K with changing the value of magnetic field or pressure
Research Project	shows very interesting phenomena due to the quantum fluctuation. This is so called as quantum
	phase transition. It is unsolved big problem in solid state physics to clarify the phase transition
	and the state at the critical region of the quantum phase transition which can be affected strongly
Number of	by the quantum fluctuation.
Researchers : 3	We cannot reach at absolute 0 K, but we will study the phase transition at the lowest
	temperatures available, that is hundreds of μ K temperatures. This is two orders of magnitude
Term of	lower than those temperatures in which other researchers are studying 'quantum phase
Project: 2005-2009	transition'. Then we expect to get more clear data about the quantum phase transition.

Title of project	Development of the 4 Spaces Access Neutron Spectrometer (4SEASONS) and Elucidation of
	the Mechanism of Oxide High-Tc Superconductivity
Head Investigator	Masatoshi Arai, Japan Atomic Energy Research Institute, Center for Neutron Science, R&D
Name	Group for Neutron Instrument, Group Leader, Principal Scientist
Abstract of	Discovery of the high-Tc superconductivity (HTSC) in copper-oxides is a significant incident
Research Project	for science as well as technology. Even after 20 years of vigorous research activities, its
	mechanism has not been completely clarified, though importance of magnetism as well as lattice
	dynamics has been suggested. Neutron scattering is one of the most powerful tools to study the
Number of	mechanism of HTSC, because it can directly detect lattice and magnetic properties of materials.
Researchers : 9	In Japan, a world-class pulsed neutron source will be brought into operation in 2007 in Japan
	Proton Accelerator Research Complex (J-PARC). In the present project, we develop a novel
	neutron scattering instrument with 100 times higher performance than existing world-class
Term of	instruments. With this instrument, we solve the challenging problem of HTCS ahead of any
Project: 2005-2009	other research groups in the world.

Title of project	Highly Controlled New Materials of Heavy Group-14 Elements.
	Creation and Development of Their Unique Functions
Head Investigator	Mitsuo Kira, Tohoku University, Graduate School of Science, Professor
Name	
Abstract of	Organic chemistry-chemistry of carbon-based materials has long history and finds various
Research Project	applications towards synthetic medicines, synthetic polymers, functional organic materials, and
	so on. On the other hands, the chemistry of heavier group-14 elements like silicon and
Number of	germanium is relatively young and rapidly developing as a field of the basic science. The aim
Researchers : 3	of this study is to make rapid progress of the basic chemistry of silicon and heavier group-14
	elements by creating new types of materials and discovering their unique properties and
	reactions. Our achievements will lead to the development of new excellent catalysts and new
Term of	functional materials based on the advanced chemsitry of the heavy group-14 elements in the
Project: 2005–2008	near future.

Title of project	Molecular Design and Quantum Hysteresis of Polyoxometalates-based Molecular Magnets
Head Investigator	Toshihiro Yamase, Tokyo Institute of Technology, Chemical Resources Laboratory, Professor
Name	
Abstract of	Spin-frustrated polyoxometalate, K ₁₁ H[(VO) ₃ (SbW ₉ O ₃₃) ₂]·27H ₂ O, containing approximately
Research Project	equilateral (VO) ₃ ⁶⁺ -triangle sandwiched by two diamagnetic [SbW ₉ O ₃₃] ⁹⁻ ligands is found to
	show magnetization jumps with distinct hysteresis for the $S=1/2 \leftrightarrow S=3/2$ level-crossing under
	fast sweeping pulsed magnetic fields at T \leq 0.5 K. This unusual phenomenon is attributed to the
	theoretical prediction of half step magnetization, which is expected for an antiferromagnetic spin
	triangle with antisymmetrical Dzyaloshinky-Moriya interaction. The spin-frustrated
	$(VO)_3^{6+}$ -triangle for 1 is a good model of the magnetization between pure quantum states $S=1/2$
Number of	and 3/2 and provides a new class of single-molecule magnets. The present research focuses on
Researchers : 5	the molecular design of the extensive series (such as prism, spin hexagon, and spin ball) of
	magnetic polyoxometalates, which provide a framework for probing magnetic ordering in a spin
	lattice of the largest series of isoelectronic and isostructural spin systems. Such molecular
	magnetism of frustrated or ferromagnetic lattice spin systems not only provides a new avenue
	for detailed exploration of the basic issues of geometric frustration and the origins in the spin
Term of	anisotropy, but also offers the prospect of being modeled unencumbered by some of the
Project: 2005–2007	complications of bulk magnetic materials.

Title of project	Science and Technology of Concentrated Polymer Brushes
Head Investigator	Takeshi Fukuda, Kyoto University, Institute for Chemical Research, Professor
Name	
Abstract of	Polymer chains densely end-grafted on a solid surface are stretched away from the surface to
Research Project	avoid mutual steric interference, forming a "polymer brush". The structure and properties of a
	polymer brush should strongly depend on graft density, but a concentrated brush, in which graft
	chains occupy more than about 10% of the substrate surface, had remained an unknown and
Number of	inexperienced tissue until recently, when we succeeded in synthesizing concentrated brushes
Researchers : 5	comprising low-polydispersity graft chains by the use of living radical polymerization. The
	variety of unique and new properties observed for them have promoted us to undertake this
	comprehensive and systematic study on the synthesis, structure and properties, and functions
Term of	and applications of concentrated polymer brushes, aiming at the development of new fields of
Project: 2005-2008	science and technology.

Title of project	Efficient Pattern Discovery from Massive Semi-Structured Data for Knowledge Infrastructure
	Formation on the Web
Head Investigator	Hiroki Arimura, Hokkaido University, Graduate School of Information Science and Technology,
Name	Professor
Abstract of	By rapid progress of network and storage technologies for the last decade, a huge amount of
Research Project	weakly structured electronic data of various types, called semi-structured data, is accumulated
	over networks. In particular, the World Wide Web (WWW, or Web) is the largest knowledge
	archive spread over the Internet that the human being ever had. We study efficient
Number of	semi-structured data mining technologies that supports human discovery of useful knowledge
Researchers : 4	from massive collections of semi-structured data on networks. In particular, we develop
	high-speed semi-structured data mining engines as a core of large-scale knowledge
Term of	Infrastructure formation technology from the Internet and establish their architecture and base
Project: 2005-2007	technologies.

Title of project	Atomistic Clarification, Control and Prediction of Irradiation-Induced Embrittlement and
	Degradation Nuclear Reactor Steels by Advanced Technology of Nano-Materials Science
Head Investigator	Masayuki Hasegawa, Tohoku University, Institute for Materials Research, Professor
Name	
Abstract of	In Japan, more than 30% electricity is provided by nuclear reactors. Ensuring safe operation of
Research Project	these reactors is a current vital issue since the reactors of the first generation are approaching
	their initially designed operating lifetimes. The present project focuses on one of the major
Number of	concerns about the safety of reactor steels - such as embrittlement of the pressure vessel steels.
Researchers : 5	Their microscopic mechanisms in atomic scale are clarified by using a newly developed
	positron annihilation technique supplemented by the 3D atom probe and electronic-structure
Term of	calculations. The resulting mechanisms, correlated with the macroscopic mechanical properties,
Project: 2005-2009	are employed to control and to predict the embrittlement and degradation.

Title of project	Development of an ultra-high resolution semi-conductor PET(:next generation PET) with
	resolution smaller than 1mm
Head Investigator	Keizo Ishii, Tohoku University, Graduate School of Engineering, Professor
Name	
Abstract of	PET (Positron Emission Tomograph) is a state-of-the-art medical device using the property of
Research Project	elementary particle (particle-antiparticle annihilation). By measuring 2 gamma rays produced by
	positron-electron annihilation outside the body after injecting a drug labeled with a positron
	emitter radioisotope, the distribution of the drug consumed can be imaged. In this project, on the
Number of	basis of capabilities to define the detection position of gamma rays within accuracy smaller than
Researchers : 10	1mm by using a semi-conductor detector, we develop a PET with ultra-high spatial resolution
	smaller than 1mm. This improves the current resolution of PET(3mm~4mm) by one order of
	magnitude. Our PET enables to find a cancer with size smaller than 1mm and contributes to the
Term of	extermination of cancer. In addition, it promotes the development of new drugs and gene
Project: 2005-2009	therapy at molecular level.

Title of project	Basic Processes In Hydrogen Atom-Surface Reactions:
	Spin Effect, Reaction Dynamics, and Origin of Interstellar Hydrogen Molecules
Head Investigator	Akira Namiki, Kyushu Institute of Technology, Faculty of Engineering, Professor
Name	
Abstract of	The reaction of atomic hydrogen with surfaces is of a great relevance to vast fields from the
Research Project	material to space science. To know their mechanisms is indispensable for human beings to
	achieve further development of since and technology.
Number of	How do hydrogen atoms stick to surfaces? How do they abstract hydrogen adatoms to
Researchers : 6	formhydrogen molecules? In order to answer these questions we will do experiments employing
	a well defined atomic hydrogen beam and well characterized surfaces. Hydrogen reactions
Term of	on cold ice surfaces are also studied in experiments to verify that the hydrogen molecule in the
Project: 2005-2009	space are produced on small dust particles covered with cold water ices.

Title of project	Establishment of Verified Numerical Computation
Head Investigator	Shin'ichi Oishi, Waseda University, Faculty of Science and Engineering, Professor
Name	
Abstract of	When John von Neumann innovated computers, one of his major motivations was to analyze
Research Project	rigorously nonlinear partial differential equations governing fluid. Contrary to this, until present,
	usually errors of numerical computations do not estimated rigorously. The aim of this research
Number of	is to establish theory and practice of verified numerical computations, i.e., for linear algebraic
Researchers : 5	equations, we will develop fast and accurate algorithms for calculating rigorous error bounds of
	numerical solutions. Especially, we will treat sparse and extremely high dimensional
Term of	problems. Based on this, we will establish a method of computer assisted proof for boundary
Project:2005-2009	value problems of nonlinear partial differential equations.

Title of project	Postnatal developmental changes in synaptic molecules underlying maturation of excitatory
	synaptic transmission and synaptic regulation
Head Investigator	Tomoyuki Takahashi, The University of Tokyo, Graduate School of Medicine, Professor
Name	
Abstract of	Our principal aim is to clarify molecular mechanisms underlying synaptic transmission and
Research Project	synaptic regulation. Our strategy is to clarify causal relationships between molecules and
	functions at developing synapses. At the calyx of Held in brainstem slices of rodents at various
	postnatal ages, we make simultaneous whole-cell recordings from presynaptic terminals and
Number of	postsynaptic target cells, and infuse, for example, a specific inhibitor or an activator of a
Researchers : 5	functional molecule into a presynaptic terminal. By analyzing changes in synaptic responses,
	presynaptic ion channel currents and vesicle exo- and endocytosis, a role of a molecule in the
	nerve terminal can be identified. Using this method in combination with immunocytochemical
Term of	techniques for presynaptic proteins and gene-knockout mice, we will solve fundamental
Project: 2005–2007	questions regarding transmitter release and its regulation.

Title of project	Mechanisms that lead to the difference in equational and reductional chromosome segregation
Head Investigator	Yoshinori Watanabe, The University of Tokyo, Institute of Molecular and Cellular Biosciences,
Name	Professor
Abstract of	Throughout long history of life, organisms have persisted with dependence on equational
Research Project	division, which equally divides replicated copies of genome (or chromosomes). Eukaryotic
	organisms could diversify and achieve splendid evolution thanks to the acquisition of a sexual
	reproduction system, which involves the mixture of the genomes of two different organisms. In
Number of	establishing the sexual reproduction system, the bottle neck must have been the acquisition of
Researchers : 1	the ability to precisely reduce the chromosome number by half, a process that is much more
	complex and exquisite than that of mixing genomes. In this study, we will uncover the molecular
Term of	mechanisms that comprise the difference between equational and reductional chromosome
Project: 2005-2009	segregation.

Title of project	AID-dependent genetic alteration mechanism to generate antigen-specific antibodies
Head Investigator	Tasuku Honjo, Kyoto University, Graduate School of Medicine, Immunolgy and Genomic
Name	Medicine, Professor
Abstract of	Vertebrates defend themselves from innumerabale pathogens (antigens) by producing diverse
Research Project	antibodies that efficiently bind and destroy antigens. To do so, vertebrates like humans have to
	introduce alterations in the genes for antibody because they have only 20,000 to 30,000 genes.
	The antibody gene is altered by two distinct manners; somatic hypermutation (SHM) that
	replaces base-pairs in DNA encoding the antigen binding domain of antibodies and class switch
Number of	recombination (CSR) that replaces the exons encoding the domain for antigen elimination. In
Researchers : 4	1999, we discovered AID essential for SHM and CSR and showed that AID cleaves DNA for
	these DNA alterations. In this project, we will focus on the following aspects; a) how AID can
	mediate two apparently distinct DNA alteration machanisms, i.e. mutations and recombination,
	and b) how AID cleaves DNA. This research will unveil the machanism for generation of
Term of	antigen specific antibodies, which has been one of the greatest mysteries in biology since last
Project: 2005-2009	century.

Title of project	Studies on molecular mechanisms that control development and function of the neural network
Head Investigator	Shigetada Nakanishi, Osaka Bioscience Institute, Director
Name	
Abstract of	The objective of this project is to elucidate regulatory and intergrative mechanisms of the neural
Research Project	network. Investigations are directed toward the neural networks of the cerebellum and the
	basal ganglia, in which input and output of neural information are relatively quantitatively
	examined. Three fundamental questions are addressed;1)how the functional cerebellar
Number of	network is formed in an activity-dependent manner during the postnatal period; 2)how the
Researchers : 3	cerebellar network controls motor coordination and motor learning; 3) how the basal ganglia
	network governs motor balance and causes addiction of abused drugs. The investigations will
Term of	be conducted by combining various interdisciplinary approaches including molecular biology,
Project: 2005-2009	knockout/transgenic techniques, electrophysiology and morphology.

Title of project	Molecular mechanism and physiological role of apoptosis
Head Investigator	Shigekazu Nagata, Osaka University, Graduate School of Frontier Bioscience, Professor
Name	
Abstract of	Many harmful and toxic cells are generated in animal, and they die via apoptosis. In the
Research Project	apoptotic process, cells shrink and condense, and their DNA is degraded. This process is
	mediated by a group of proteases called caspases, and a DNase (CAD) that is activated by
Number of	caspases. Dying apoptotic cells expose phosphatidylserine on their surface, and are engulfed by
Researchers : 2	macrophages. In this project, we will study the molecular mechanism of the apoptotic processes.
	We will then prepare mice deficient in the genes involved in apoptosis, and see whether their
Term of	defect will cause any diseases or not.
Project: 2005–2009	

Title of project	Chromatin Dynamics underlying Cellular Memory
Head Investigator	Susumu Hirose, National Institute of Genetics, Department of Developmental Genetics,
Name	Professor
Abstract of	Cellular memory is defined as a phenomenon in which a particular pattern of gene expression is
Research Project	maintained through cell divisions and even after cell division. For example, once expression
	pattern of the Hox genes is established during embryogenesis, it is maintained for a long
Number of	period through cell divisions and governs the formation of the body segments. Thus, cellular
Researchers : 2	memory plays crucial roles in the development of multicellular organisms. In this study, we
	aimed to elucidate the mechanisms underlying cellular memory using the fly Drosophila
Term of	melanogasterin which both molecular and genetic approaches are amenable, and verify their
Project: 2005–2007	generality through the studies using the mouse.

Title of project	Uncovering the mystery of molecular assembly and diversity of the proteasome
Head Investigator	Keiji Tanaka, Tokyo Metropolitan Organization for Medical Research, The Tokyo Metropolitan
Name	Institute of Medical Science, Vice director
Abstract of	The proteasome (a eukaryotic ATP-dependent protease complex) collaborating with ubiquitin (a
Research Project	posttranslational modifier serving as the degradation signal) as a partner is a protein-destroying
	apparatus requiring metabolic energy. It is now clear that this cellular apparatus actively controls
	a wide variety of biologically important processes, such as cell-cycle control, metabolic
Number of	regulation, immune responses, signal transduction, transcriptional control, quality control, stress
Researchers : 1	response, DNA repair, etc. Over the past 25 years, we have been aiming to elucidate
	comprehensively the divergent roles of the proteasome in the life science field, but the details
	still have remained unknown. The main objects of our study are to clarify how the proteasome is
Term of	assembled with high fidelity as an unusually large multi-enzymatic complex and why the
Project: 2005– 2009	proteasome displays molecular diversity.