
[Grant-in-Aid for Specially Promoted Research] Science and Engineering (Mathematics/Physics)

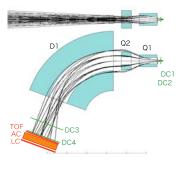
Title of Project : High-resolution Spectroscopy of Many-Body systems with Multi-Strangeness

Tomofumi Nagae (Kyoto University, Graduate school of Science, Professor)

Research Area : Particle/Nuclear/Cosmic Ray/Astro physics

Keyword : Nuclear physics (experiment)

[Purpose and Background of the Research]

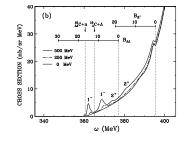

spectroscopic information of both Ξ The hypernuclei and double- Λ hypernuclei will give us information of Ξ N interaction, Λ Λ interaction, and their coupling through the Ξ N- $\Lambda \Lambda$ channel. Such experimental information of baryon-baryon interaction with strangeness (S)= almost nothing at this -2 is moment. Nevertheless, several baryon-baryon interaction models have been theoretically developed. They put their basis on the so-called realistic nuclear force which reproduces a plentv of nucleon-nucleon scattering data, and extend it to the flavor SU(3) baryon-baryon interactions based on a traditional meson-exchange picture. The recent spectroscopic information of the S=-1systems, such as Λ hypernuclei and Σ hypernuclei, gives an essential role to construct the baryon-baryon interaction models. Therefore, the experimental information on the strength of the central attraction of the Ξ N interaction and its coupling strength in the $\Xi \text{ N-} \Lambda \Lambda$ channel could be an important key to constrain the interaction models.

[Research Methods]

In this research, the (K^{\cdot},K^{+}) reaction spectroscopy is conducted for the first time by using the good energy resolution and large acceptance spectrometers together with the world-highest intensity K⁻ beam available at J-PARC.

The new spectrometer is designed to have a momentum resolution of better than

0.05%(FWHM) and the solid-angle acceptance larger than 70 msr. The new spectrometer has a QQD configuration to have a better optical property.



It will become possible to measure the excited levels of double- Λ hypernuclei together with the bound states of Ξ hypernuclei in the (K[•],K⁺) missing-mass spectra.

[Expected Research Achievements and Scientific Significance]

We will carry out the (K,K^+) spectroscopy to observe Ξ hypernuclei and double- Λ hypernuclei in a wide excitation energy range of ~40 MeV. The coupling between two types of hypernuclear bound states through the $\Xi N \cdot \Lambda$ Λ affects the energy levels of both Ξ hypernuclei and double- Λ hypernuclei. With the new spectrometer system, we will measure the ¹⁶O(K,K^+) reaction, first. Then, we will

investigate the iso-spin dependence and mass-number dependence of the Ξ N potentials by using 10 B, ⁷Li and 28 Si targets.

[Publications Relevant to the Project]

- P. Khaustov, D.E. Alburger, et al., "Evidence of \(\mathbf{\Sigma}\) hypernuclear production in the ¹²C(K⁺,K⁺)¹²_zBe reaction", Phys. Rev. C 61 (2000) 054603
- T. Harada, Y. Hirabayashi, A. Umeya, "Production of doubly strange hypernuclei via Z - doorways in the ¹⁶O(K⁻,K⁺) reaction at 1.8 GeV/c", Phys. Lett. B 690 (2010) 363-368.

Term of Project FY2011-2015

(Budget Allocation) 336, 200 Thousand Yen

[Homepage Address and Other Contact Information]

http://www-nh.scphys.kyoto-u.ac.jp/~nagae/ tokubetsu/index.html nagae@scphys.kyoto-u.ac.jp