人工光合成機能を有する 光触媒システムの開発

東京理科大学 理学部 教授

昭彦 工藤

研究の背景

エネルギー・環境問題の解決に向けて、太陽エネルギー を有効に利用する科学技術の開発が強く望まれています。 そのひとつの方法として、太陽エネルギーを貯蔵可能な化 学エネルギーに変換する人工光合成が着目されています。 この人工光合成の代表的な反応に、水を水素と酸素に分 解する反応があります。ここで、水素は、燃料電池に使えるク リーンエネルギーとしてのみならず、化学工業における重要 な基幹原料です。人工光合成による効率のよい水分解が 実現されれば、このように有用な水素を水から製造できるよ うになります。

研究の成果

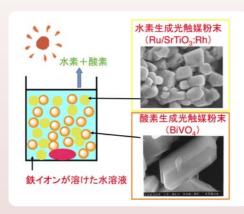
私たちは、人工光合成である水分解による水素生成や 二酸化炭素の還元反応に活性を示す無機物質からなる 光触媒材料の開発を行っています。これまで開発してきた いろいろな金属酸化物や金属硫化物光触媒の一部を光 触媒ライブラリーとして表1に示します。

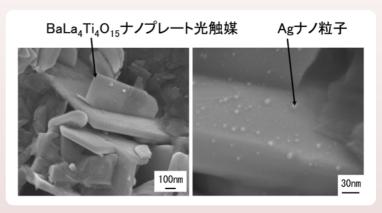
その中でもユニークな光触媒は、ランタンをドーピングしたタ ンタル酸ナトリウム光触媒です。これを用いると、紫外線照射 下で水が分解して水素と酸素の泡が激しく発生することを 目視で観察できます。さらに、可視光照射下で水素や酸素 生成に活性を示す、ロジウムをドーピングしたチタン酸ストロン チウムとバナジン酸ビスマスも開発しました。これら2種類の 粉を鉄イオンが溶けた水溶液に入れて太陽光をあてると、 水が分解して水素と酸素が生成します(図1)。また、二酸化 炭素の還元に活性を示す光触媒に、銀微粒子を担持した バリウム-ランタン-チタン酸化物粉末光触媒があります(図 2)。この光触媒は、紫外光しか使えませんが、水と二酸化炭 素のみから水素と一酸化炭素を効率よく生成することがで きます。このような新たな光触媒材料の開発の成果は、光

触媒の研究分野に大きな波及効果をもたらしています。

今後の展望

システムとして簡便な粉末光触媒を用いることにより、水 と太陽光のみから水素を作ることを実現できました。しかし、 実用化にはまだ太陽エネルギー変換効率が低いため、さら なる高効率化や新たな光触媒材料の開発が必要です。


人工光合成は、エネルギー・環境問題を解決する理想的 なサイエンス・テクノロジーです。この研究を継続的に進めて いくことにより、新たなクリーンエネルギー社会を構築できるこ とが期待されます。さらには、「人工光合成工場」という今ま でにない産業を創成することができます。


関連する科研費

平成24-27年度 基盤研究(A)「人工光合成型二酸化 炭素固定化反応のための新規光触媒の開発」 平成24-28年度 新学術領域研究(研究領域提案型) 「水素発生光触媒機能を有する人工光合成システム」

紫外光応答型光触媒	可視光応答型光触媒		
水の分解	水の分解	水素生成	酸素生成
BaLa ₄ Ti ₄ O ₁₅	Pt/SrTiO ₃ :Rh-BiVO ₄	ZnS:Cu	BiVO ₄
CaZrTi ₂ O ₇	Pt/SrTiO3:Rh-Bi2MoO4	ZnS:Ni	Bi ₂ MoO ₆
ANb ₂ O ₆ (A: Sr,Ba)	Pt/SrTiO ₃ :Rh-WO ₃	ZnS:Pb,Cl	AgNbO ₃
Sr,Nb,O,	Ru/SrTiO, Rh-BiVO,	NaInS ₂	TiO ₂ :Cr,Sb
Cs ₂ Nb ₄ O ₁₁	Ru/SrTiO, Rh-WO,	AgGaS ₂	Ag ₃ VO ₄
Ba ₅ Nb ₄ O ₁₅		CuGaS ₂	AgLi, 712/302
ATa,O, (A: Ca, Sr, Ba)		CulnS2-AgInS2-ZnS	Agos Pros TiO,
K ₃ Ta ₃ Si ₂ O ₁₃		CulnS2-AgInS2	TiO ₂ :Ni,Nb
ATaO ₃ (A: Li, Na, K)		AgGa ₂ In ₃ S ₈	TiO2:Rh,Sb
AgTaO ₃		CuGa ₂ In ₃ S ₈	PbMoO ₄ :Cr
NaTaO ₂ :La		CuGa ₅ S ₈	SrTiO ₃ :Ir
K ₂ LnTa ₅ O ₁₅		Cu ₂ ZnGeS ₄	SrTiO ₃ :Ni,Ta
NaTaO ₃ :A (A: Ca, Sr, Ba)		CuAgZnSnS ₄	SnNb ₂ O ₄
K ₃ Ta ₃ B ₂ O ₁₂		SrTiO ₃ :Cr,Sb	NaNbO3:Ir.Sr
ATa ₃ O ₈ (A: Rb, Cs)		SrTiO ₃ :Cr,Ta	NaNbO3:Rh,La
Cs ₄ Ta ₁₀ O ₂₇		SrTiO ₃ :Rh	200000000000000000000000000000000000000
Cs ₆ Ta ₁₆ O ₄₃		SrTiO ₃ :Ru	
		SrTiO ₃ :1r	
		Sr ₂ TiO ₄ :Rh	
		CsTi ₂ NbO ₂ :Rh	
		SnNb ₂ O ₆	
		Sn/KTiNbO _s	

表1 水分解光触媒ライブラリー

(BiVO₄)粉末から構成されるソーラー水分解に活性 な光触媒システム

ロジウムをドーピングしたチタン酸ストロンチ 図2 二酸化炭素の還元に活性な銀微粒子を担持したバリウム-ランタン-チタン ウム粉末(Ru/SrTiOa:Rh)とバナジン酸ビスマス 酸化物(BaLa $_{\perp}$ Ti $_{\perp}$ O $_{15}$)光触媒の走査型電子顕微鏡写真