[Grant-in-Aid for Scientific Research (S)] Biological Sciences (Medicine, Dentistry, and Pharmacy)

Title of Project : Development of Novel Anti-Infectious Drugs Exhibiting Therapeutic Effects

Kazuhisa Sekimizu (The University of Tokyo, Graduate School of Pharmaceutical Sciences, Professor)

Research Project Number: 15H05783 Researcher Number: 90126095

Research Area: Environmental and hygienic pharmacy

The assay systems we develop will then be used to

screen for inhibitors.

Keyword: Microbiology and infectious diseases, Pathogenicity

Keyword Microbiology and mectious diseases, ratiogenicity	
[Purpose and Background of the Research]	[Expected Research Achievements and
The development of novel anti-infectious drugs	Scientific Significance
with therapeutic effects is urgently needed to	1. Understanding bacterial pathogenesis
establish effective strategies against	Based on comprehensive analyses of data
multidrug-resistant pathogens. Current strategies,	obtained in this project, we will identify novel
however, are inadequate and the number of newly	genes responsible for bacterial pathogenesis.
discovered drugs has dramatically decreased,	Biochemical analysis of the functions of the
resulting in a very limited number of	products of the responsible genes will allow us to
anti-infectious drugs with novel mechanisms. One	uncover networks of gene expression involved in
possible reason for this is that the behavior of	bacterial pathogenicity. These findings will
pathogenic bacteria in test tubes differs	contribute to our understanding of bacterial
considerably from that in hosts. In this project, we	pathogenesis in the host.
will focus on gene products of pathogens that are	2. Development of novel anti-infectious drugs
necessary for pathogenesis in the host	This project will identify novel genes necessary
environment. To achieve this goal, we will identify	for bacteria to survive in the host environment.
the genes in pathogens necessary for pathogen	Evaluating the products of these novel genes will
proliferation and pathogenesis in host animals.	lead to potential targets for drug development.
Based on the findings, we will establish screening	Bacterial growth inhibitors obtained by screening
systems to identify inhibitors against the gene	will be useful seed compounds for anti-infectious
products and establish a method for developing	treatments.
antibacterial agents with novel mechanisms of	
action. Our project also aims to elucidate the	[Publications Relevant to the Project]
molecular aspects of bacterial pathogenesis.	1. Hamamoto H, Urai M, Ishii K, Yasukawa J,
	Paudel A, Murai M, Kaji T, Kuranaga T, Hamase
[Research Methods]	K, Katsu T, Su J, Adachi T, Uchida R, Tomoda H,
1. Screening of pathogenic genes in bacteria using	Yamada M, Souma M, Kurihara H, Inoue M,
silkworms	Sekimizu K: <i>Nat Chem Biol</i> , 11, 127-133, 2015
We have established silkworm infectious disease	2. Kaito C, Saito Y, Ikuo M, Omae Y, Mao H,
models with human pathogenic bacteria. Using this	Nagano G, Fujiyuki T, Numata S, Han X, Obata K,
model, we will identify deletion mutants of	Hasegawa S, Yamaguchi H, Inokuchi K, Ito T,
pathogenic bacteria whose pathogenesis is	Hiramatsu K, Sekimizu K: <i>PLoS Pathog</i> , 9,
decreased compared with the wild-type strain. We	e1003269, 2013
will also identify bacterial genes whose expression	3. Kaito C, Kurokawa K, Matsumoto Y, Terao Y,
is appreciably increased in mouse organs compared	Kawabata S, Hamada S, Sekimizu K: Mol
with that in test tubes. The decreased pathogenesis	<i>Microbiol</i> , 56, 934-944, 2005
of the gene deletion mutants will be confirmed in	
mouse infection models.	Term of Project FY2015-2019
2. Establishment of an assay system to screen novel	F
antibacterial agents	(Budget Allocation) 154,500 Thousand Yen
We will then establish methods for biochemical	•
analysis of the enzymes encoded by the pathogenic	[Homepage Address and Other Contact
genes identified in this study. Using these methods,	Information
we aim to elucidate the functions of the enzymes. The assay systems we develop will then be used to	http://www.f.u-tokyo.ac.jp/~bisei/
The assay systems we develop will then be lised to t	