

Title of Project : Role of IP3 receptor in the Regulation of Synaptic Plasticity, neuronal Function and neuronal Development

Katsuhiko Mikoshiba (RIKEN, Brain Science Institute, Team Leader)

Research Area : Developmental Neurobiology

Keyword : Ca²⁺signaling, IP₃ receptor, Synaptic Plasticity, Endoplasmic reticulum (ER) stress [Purpose and Background of the Research] The 2nd messenger IP₃ increases cytosolic Ca²⁺. There was uncertainty as to the source of the Ca²⁺ and as to the nature of the IP₃-binding protein and its relationship to the putative Ca²⁺ channel. Mikoshiba discovered the IP₃ receptor (IP₃R) and IP₃R is an IP₃-binding protein and a Ca²⁺ channel, which was located on the ER where Ca²⁺ is stored. He determined the entire primary sequence (313kDa) (*Nature* 1989). He solved the X-ray crystallographic structure of the IP₃-binding core (*Nature* 2002) and the regulatory domain (*Mol Cell* 2005). He solved the 3-dimensional structure of the IP₃R by cryo-EM (*J Mol Biol.* 2004). He revealed the gating mechanism of the IP₃R channel pore to release Ca²⁺. His discovery started from the work on the P400 protein missing in ataxic mutant mice and identified P400 as the IP₃R. He has established that this IP₃R has many different cellular functions. It is involved in fertilization in both the egg (*Science* 1992) and the sperm (*Science* 2001) and is essential for dorsoventral axis formation (*Science* 1997) and cell cleavage (*J Cell Biol* 1996). In the nervous system it functions in neurite extension (Science 1998; Science Signaling 2009) and is occur. important for neuronal plasticity in the cerebellum (JNeurosci. 1998) and hippocampus (Nature 2000; Neurosci, 2010) and in secretion (Science 2005). He discovered a pseudo-ligand of the IP₃R (IRBIT) released upon IP₃ binding to the IP₃R (Mol Cell 2006). IRBIT regulates acid-base balance. (**PNAS** 2006; J Clinical Invest. 2009). These functions became abnormal when the IP₃R is blocked. He found that neurodegeneration (*Neuron* 2010) and redox damage (Cell 2005) was protected by chaperons (GRP78, ERp44) that bind to the $IP_{3}R$. He found numerous signaling molecules that associate with the IP₃R suggesting links with many other signaling pathways with implications for various diseases and he also found mutations in the human IP₃R. He contributed to the Ca²⁺ signaling field by developing an inhibitor for the IP₃R called 2-APB.

(Research Methods)

- 1) Study of the role of spine in neural plasticity, brain development and differentiation
- 2) Single molecule analysis of functional molecules in the brain by FRET, TIRF and quantum dot analysis

3) Analysis of micro-RNA (miRNA) in neuronal plasticity and development in IP₃R1 KO mice. 4) Electrophysiological analysis of the cerebellum, hippocampus and cerebral cortex 5) Screening the IP₃R associated molecules

- which works in dorso-ventral axis formation, neural development and their pathogenesis
- 6) Development of efficient indicator of IP_{3} .

7) Analysis of the mechanism of neuronal circuit formation by macropinocytosis 8)Study of disturbance of the neuronal function accompanied with IP₃ receptor dysfunction

a) Dysfunction of IP₃R1 and its pathogenesis

b) Production of region specific conditional KO

of IP₃R1 and the study of its neuronal activity

9) Development of inhibitors of IP₃Rs

10) Synthesis inhibitors of Ca²⁺ signaling

[Expected Research Achievements and Scientific Significance

Studying the role of each type of IP₃R in neurons and glial cells for neural plasticity, neural function and neural development makes it possible to understand the mechanism how normal brain functions, and many brain diseases These gives us an opportunity to prevent and rescue the diseases.

The IRBIT works as a 3rd messenger released in the presence of IP₃ regulates acid-base balance. The KO mice of IRBIT show severe psychiatric disorder, it would be possible to open a new field in neuroscience and its disorders.

[Publications Relevant to the Project]

- Furuichi T, Yoshikawa S, Miyawaki A, Wada K, Maeda N, Mikoshiba K. Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature 342(6245): 32-8. (1989)
- Higo T, Hattori M, Nakamura T, Natsume T, Michikawa T, Mikoshiba K. Subtype-specific and ER lumenal environment-dependent regulation of inositol 1,4,5-trisphosphate receptor type 1 by ERp44. *Cell* 120(1): 85-98. (2005)

Term of Project FY2013-2017

[Budget Allocation] 166,000 Thousand Yen

[Homepage Address and Other Contact

Information]

http://www.brain.riken.jp/en/faculty/details/29