

小胞体ストレス応答の分子機構とその破綻による 研究課題名 疾患機序の解明

こうの けんじ

奈良先端科学技術大学院大学・バイオサイエンス研究科・教授 河野

究 分 野:応用生物化学

キーワード:細胞応答・情報伝達

【研究の背景・目的】

小胞体は蛋白質の製造工場であり、新しく合成され た蛋白質は小胞体シャペロンの助けをかり正しく折り 畳まれ (folding)、蛋白質本来の働きをする。しかし細 胞内外のストレスにより folding がうまくいかないと、 構造異常蛋白質は小胞体内に留められることが知られ ており、この状態を小胞体ストレスと呼んでいる。ス トレス下の細胞は小胞体ストレス応答経路を活性化し、 異常タンパク質の再生や分解を行いストレスを解消す る。この応答経路の最上流に IRE1 や ATF6 というセ ンサーがあり、IRE1α による XBP1 mRNA の特殊ス プライシングや、膜結合型転写因子 ATF6 の膜からの 切断・解離という非常にユニークなシグナル伝達機構 が重要な役割をしている。さらに小胞体ストレスが、 神経変性疾患・糖尿病・大腸炎といった種々の疾患の 要因になっていることが報告されている。しかしそれ ら詳細な分子機構は未だ明らかになっていない。

本研究は、哺乳動物個体が何故多様化した小胞体ス トレス応答経路を進化的に発達させてきたのか、また 個体における生理的な小胞体ストレスとはどのような ものかを糖尿病や寄生虫感染といった生理的なストレ スに着目し、哺乳動物における小胞体ストレス応答の 分子機構と生理的意義を明らかにする。

【研究の方法】

哺乳動物個体での生理的な小胞体ストレスとして、 糖尿病や寄生虫感染に着目して解析する。これらの解 析には、小胞体ストレスセンサーIRE1a、IRE18、 ATF6α などの各種遺伝子破壊マウスを用いる。糖尿病 に関しては、マウス個体レベルでの血糖値、インスリ ン産生、グルコース負荷、などへの応答を測定する。 寄生虫感染に関しては、寄生虫や IL33 投与時の小腸杯 細胞の組織化学、電子顕微鏡等による形態変化の観察、 また杯細胞のムチン(Muc2)産生に関し、蛍光抗体・電 気泳動法などの手法により解析する。これらの個体レ ベルの解析とあわせ、膵島 β 細胞や杯細胞を培養し、 細胞レベルでインスリン産生やムチン産生が各種セン サー欠失によりどのような影響を受けるのかを、生化 学や遺伝子工学の手法を用いて分子レベルで詳細に解 析する。さらに、ストレスセンサーIRE1αの標的分子 である XBP1u mRNA の特殊スプライシング機構に関 しては、XBP1u蛋白質が小胞体膜への輸送配列と一時 的翻訳停止配列の2つをもつことを明らかとしたので、 その領域に結合する因子を単離し、質量分析の手法に より同定、その役割を解析する。

【期待される成果と意義】

膵島では常に IRE1 α -XBP1 経路が活性化してい ることから、膵島の正常な機能を保つために小胞体 ストレス応答経路の活性化が重要と考えられる。そ こでIRE1aやIRE1a/ATF6aの2重KOマウスを作 製し、ストレス応答経路が遮断されると糖尿病を起 こすことを明らかにしたい。 さらに IRE1αが膵島 β細胞のインスリン産生のどのステップに関ってい るのかを明らかにし、小胞体ストレスと糖尿病との 関連を解明したい。さらに、もう 1 つのセンサー IRE18 が寄生虫排除に重要な役割を果たしているこ とも示したい。これらの研究から、小胞体ストレス 応答が生体防御という観点から見て、生理的に重要 な役割を果たしていることを証明できると考えてい る。

【当該研究課題と関連の深い論文・著書】

- ·Iwawaki, T., Akai, R., Yamanaka, S., & Kohno, K. Function of IRE1alpha in the placenta is essential for placental development and embryonic viability. Proc Natl Acad Sci USA, 106, 16657-16662 (2009)
- · Yanagitani, K., Kimata, Y., Kadokura, H., & Kohno, K. Translational pausing ensures membrane targeting and cytoplasmic splicing of XBP1u mRNA. Science, 331, 387-399 (2011)

【研究期間と研究経費】

平成 24 年度-28 年度 159,700 千円

【ホームページ等】

http://bsw3.naist.jp/kouno/kouno.html