[Grant-in-Aid for Scientific Research(S)] Science and Engineering (Engineering II)

Title of Project : Control of Dynamics of Quantized Vortices and Progressing to Materials Science

Kaname Matsumoto (Kyushu Institute of Technology, Faculty of Engineering, Professor)

Research Area : Science and Engineering, Engineering, Material engineering, Inorganic materials/Physical properties

Keyword : (A) Crystal structure/Microstructure control

[Purpose and Background of the Research]

A nano-composite/hetero-epitaxial thin film that consists of two materials or more has a big possibility of inventing a new functionality material. There are a lot of promising targets; an efficient superconducting film approaching the theoretical limit of loss-less supercurrent; a multiferroic film interacting the magnetic phase and the ferroelectric phase in the same film; a quantum-dot solar cell film dramatically raising conversion efficiency. This technology enables to draw out the best interaction between a characteristic length/quantum effect and а material by producing an interface, a local strain, a steep change/pattern of electronic state, etc. in the crystal. In this research, the route to improve the loss-less supercurrent to the theoretical limit by using the nano-composite /hetero-epitaxial film technology is investigated. The obtained findings will be also progressed to variety of functionality materials.

[Research Methods]

Parameters defining the superconducting phase are a critical temperature T_{c} , an upper critical field B_{c2} , and a deparing current density J_0 . The energizing of large current is necessary for the measurement of J_0 though T_c and B_{c2} are measured under a small current. But, it is very difficult to achieve a critical current density J_c that almost equals J_0 because the flux pinning of quantized vortices comes off by Lorentz force quickly before reaching J_0 . In this research, exceeding the limit of $J_c/J_0 = 1.10$ %, a new

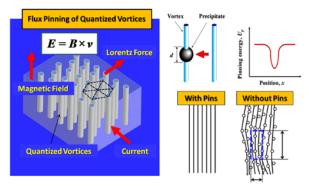


Fig.1 Flux pinning of quantized vortices.

physics of $J_c/J_0 = 30{-}50$ % is developed under large Lorenz force. An introduction of strong pinning centers is studied from the viewpoints of "optimized pinning structure", "thin film technology", and "microscopic characterization".

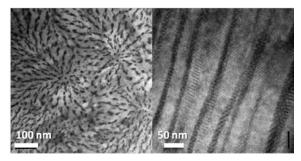


Fig. 2 Advanced flux pinning structure.

[Expected Research Achievements and Scientific Significance]

Showing the route that achieves $J_c/J_0 = 30-50$ % is the monument of the flux pinning technology. Acquiring the experiences of a nanostructure design, an evaluation from an atom/molecular level, and a large-scale calculation, etc. is effective for development of other functionality films.

[Publications Relevant to the Project]

K. Matsumoto, P. Mele, "Artificial pinning center technology to enhance vortex pinning in YBCO coated conductors", *Supercond. Sci. Technol.* 23, pp. 014001-pp. 014013, 2010. Tomoya Horide, Kaname Matsumoto *et al.*, "Control of the glass-liquid transition temperature in YBa₂Cu₃O_{7-x} films", *Phys. Rev.* B 79, pp. 092504-pp. 092507, 2009.

Term of Project FY2011-2015

(Budget Allocation) 159, 600 Thousand Yen

[Homepage Address and Other Contact Information]

http://w3.matsc.kyutech.ac.jp/energy/ index.html