## [Grant-in-Aid for Scientific Research(S)]

Biological Sciences (Medicine, dentistry, and pharmacy I)



## Title of Project : The Epigenomic Analysis of Obesity and Insulin Resistance

Juro Sakai

(The University of Tokyo, Research Center for Advanced Science and Technology, Professor)

Research Area : Medicine, Dentistry, and Pharmacology

C . 1

Keyword : Metabolic syndrome

1 D

| [Purpose and Background of the Research]                                                        | [Expected Research Achievements and                |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Obesity, type 2 diabetes, atherosclerosis, which                                                | Scientific Significance                            |
| is often clustered and called metabolic syndrome,                                               | In this project we will reveal the followings: (1) |
| is a multifactorial disease in which inherited                                                  | the mechanism by which the H3K9                    |
| allelic variation, together with environmental                                                  | methylations regulate obesity and metabolic        |
| variation, determines the predisposition of an                                                  | syndrome, as shown in JHDM2A-/- mice               |
| individual to developing the disease.                                                           | (Inagaki T et al 2009). We also reveal the         |
| Epigenetics is caused by chromatin                                                              | target genes of JHDM2A in adipocyte. (2)           |
| modifications such as DNA methylations and                                                      | histone methyltransferases and demethylases        |
| histone modifications not by changes in the                                                     | as well as histone code involved in adiposity      |
| underlying DNA sequences. Stimuli from cell                                                     | and adipogenesis and their pathophysiological      |
| surfaces are transmitted to the nucleus thereby                                                 | roles including their enzymatic activity, protein  |
| induces chromatin modifications. Recent study                                                   | complexes to exert their effects, and their        |
| has suggested that environmental stimuli are                                                    | targets. These analyses will lead us to find out   |
| closely related to obesity and insulin resistance.                                              | the histone code responsible for the obese         |
| We have recently demonstrated that H3K9                                                         | phenotype. These findings will also provide us     |
| methylation is related to obesity. In this project                                              | the new therapy and treatment for obesity and      |
| we further investigate the epigenetic role in the                                               | metabolic syndrome. Epigenetic analyses may        |
| development of obesity and glyco-lipid                                                          | take over the waist circumference for the          |
| metabolism.                                                                                     | diagnosis of predisposition to atherosclerosis     |
| Gene-environmental interactions unique to each<br>individual will determine the obese phenotype | and type 2 diabetes.                               |

DNA thylations

Histone modifications

## [Publications Relevant to the Project]

Wakabayashi K, Okamura M, Tsutsumi S, et al. (2009) The peroxisome proliferator activated receptor  $\gamma$  /retinoid X receptor  $\alpha$ 1 heterodimer targets the histone modification enzyme PR-Set7/Setd8 gene and regulates adipogenesis through a positive feedback loop. Mol Cell Biol, 29, 3544-3555.

- Inagaki T, Tachibana M, Magoori K, et al 2. (2009) Obesity and Metabolic Syndrome in Histone Demethylase JHDM2a Deficient Mice. Genes to Cells, 14, 991-1001.
- 3. Okamura M, Kudo H, Wakabayashi K, et al (2009) COUP-TFII acts downstream of Wnt/ $\beta$ -catenin signal to silence PPAR $\gamma$  gene expression and repress adipogenesis. Proc Natl Acad Sci U S A. 10, 5819-5824.

[Term of Project] FY2010-2014

[Budget Allocation] 159,900 Thousand Yen

[ Homepage Address and Other Contact Information]

http://mm.rcast.u-tokyo.ac.jp http://www.lsbm.org/staff/sakai.html

## modifications [Research Methods]

factors

Environmental Genetic factors

In 3T3-L1 adipocyte, using next generation giga sequencer and chromatin immuoprecipitaion technique (ChIP-seq), we determine the histone modifications, using mass spectrometer we determine proteome that interacts with histone modification enzymes. By combining these data together with transcriptome and three dimensional chromosome conformation capture technique, we analyze dynamic changes of histone modifications in adipogenesis. For JHDM2A and SETDB1, we generate adipocyte specific knock out mice and examine consequence of H3K9 modifications in the development of obesity and insulin resistance.

Alterations of environment leads to the epigenomic