		-							
Principal Res	earcher	Kazuo	Nakajima				Num	ber of Res	4
							ear	chers	
Research Inst	itution	Profes	sor, Institute	for Mate	rials 1	Research,	Loca	tion of Ins	Sendai
• Department • Title		Tohok	u University				titu	tion	
Title ofPr	Growth of SiGe bulk single crystasl with low defect density and creation of								
oject	functional heterostructures								
Abstract of	Owing to the globalization of materials for device applications, absence of								
ResearchPro	substrates, which are suitable for the growth of thin films, often hampers								
ject	realization of desired performance. This problem could be solved if we could								
	establish a technology to grow multicomponent bulk crystals for substrates. We								
	have already developed in-situ monitoring system of the position and								
	temperature of the crystal/melt interface, and applied the system to grow SiGe								
	bulk crystals with uniform composition by controlling the growth temperature								
	during growth. However, for realization of strain-controlled functional								
	heterostructures on SiGe substrates, further improvement of crystal quality is								
	required. In this research, we attempt to develop a new technique to realize								
	high-quality SiGe bulk single crystals based on the combination of floating-zone								
	method and multocomponent zone-melting method with in-situ monitoring.								
	Furthermore, we utilize SiGe as a sunstrate for subsequent epitaxy for strain-controlled								
	functional heterostructures.								
References	Y. Azu	xami,	S. Miyashita,	K. Fujiwara,					
	and K. Nakajima, "Growth of SiGe bulk crystal with uniform composition by directly								
	controlling the growth temperature at the crystal-melt interface using in situ monitoring								
	system", J. Crystal Growth, 224, 204-211 (2001). K. Nakajima, T. Kusunoki, Y.								
	Azuma, N. Usami, K. Fujiwara, T. Ujihara, G. Sazaki, and T. Shishido, "Compositional								
	variationinSi-rich SiGe single crystalsgrown by multi-component zone melting method								
	using Si seed and sourcecrystals", J. Crystal Growth, 240, 373-381 (2002).								
Term of Project	Fiscal years 2002-2006. (5years)								
Budget Alloc	FY2	002	FY2003	FY200)4	FY200	5	FY2006	TOTAL
ation									
(inthousandofyen)	4	45,400	26,600	6,600		,100	7,900	93,600	
Homepage Ad	http://www.xtalphys.imr.tohoku.ac.jp/								