研究代表者氏名		小薗	英雄				研究	2組織	10人
所属機関・部局・職		東北大	学・大学院理	学研究科	・教授		所属	機関所在地	仙台市
研究課題名	非線形偏微分方程式の大域的可解性と解の漸近挙動に関する統一理論								
研究の概要等	本研究では 20 世紀後半の目覚ましい解析学の成果を基礎に,非線形偏微分方程式全般に渡って,解の存在,一意性,安定性といった "適切性 "について考察する.時間局所的適切性から始めて,最終的には時間大域的適切性を統一的に研究し,新								
	世紀初頭に新たな理論を構築することを目指す.手法として,従来の関数解析学や								
	変分学的なアプローチに加えて,最近の調和解析学の成果を取り入れることに本研								
	究の特色がある.具体的には,流体力学の基礎方程式班,波動・分散型方程式班,								
	反応拡散方程式班からなる3つの研究班を構成する.各班においてそれぞれ,ナビ								
	エ・ストークス方程式の弱解の正則性,フーリエ制限ノルムの方法および I-method								
	による KdV 方程式,ベンジャミン・小野方程式の大域的適切性における初期値の関								
	数空間の拡張、シャドウシステムによるギーラー・マインハルト方程式の解の挙動の記述などを中心的ラースとする。といわけたビエ・スト・クス大程式の大きな知								
	の記述などを中心的テーマとする.とりわけナビエ・ストークス方程式の大きな初期データに対する時間大域的古典解の存在は,ミレニアムの数学難問題 7 題の 1 つとしてクレイ研究所が懸賞付き(百万ドル)で提唱している.また,ローレンツ計量をもつ多様体上でのヤン・ミルズ方程式は,非線形波動方程式の初期値問題の大域的可解性に帰着され,同研究所の懸賞付きのもう 1 題であるカラー・ゲージ理論の問題に深く関連している.このように本研究の対象は,非線形偏微分方程式のみに留まらず,リーマン予想と同等に取り扱われている数学全体に大きな影響を及ぼす話題である.								
当該研究課題	1. 小薗英雄, 乱流の数理 パリティ 18 巻(2003), 28-35.								
と関連の深い	2. 小薗英雄, Navier-Stokes 方程式 クレイ研究所ミレニアム懸賞問題解説 数学								
論文・著書	54(2002), 178-202.								
(研究代表者	3. Kozono, H., Shibata, Y., Recent Topics on Mathematical Theory of Viscous								
のみ)	Incompressible Fluid, Lecture Notes in Numerical and Applied Analysis Vol. 16,								
	Kinokuniya 1998.								
研究期間	平成 1 5	5 年度 ·	~ 1 9 年度(5	年間)					
研究経費	平成 1 5	5年度	平成16年度	平成 1	7 年度	平成 1	8年度	平成19年度	合計
(16年度以		千円	千円		千円		千円	千P	千円
降は内約額)		14,400	11,500		10,800		10,800	13,50	61,000
ホームページ		なし							