研究代表者氏名		旭	耕一郎				研究	 E組織	3人
所属機関・部局・職			<u>***</u> :業大学・大学		:研究科	↓・教授		。 機関所在地	東京都
		×14/31 ==	.><> \	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	~1701	1 1/1/2			目黒区
│ 研究課題名 新型核スピンメーザーに。				ح الم	の雷気	双极子	エーメン		
WINDHINGE II									
	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・								
	も符号を変えることから、物質の究極像を見分けるユニークなプローブとなっている。ス								
	究は、 ¹²⁹ Xe の EDM を現在の実験的上限である d(¹²⁹ Xe) < 4 × 10 ⁻²⁷ e・cm より 2 を								
	の領域まで探索して、有望視されている「標準模型を拡張した」理論の多くが予言するこの								
	領域に実験のメスを入れる。								
	EDM の測定は、磁場と電場のもとで 129Xe 核スピンを歳差運動させ、その周波数の電								
	逆転による差を検出することによって行われる。超高感度の EDM 検出には、i)スピン歳差								
	の長時間維持と ii)磁場変動の精密モニターが鍵となる。このため、我々が最近発振に								
	成功した、人工フィードバック機構による新型核スピンメーザーを導入する。これ								
	によって数十 mG の低磁場で半永久的に持続するスピン歳差を実現し、併せてこの								
	低磁場で始めて適用可能な非線形磁気光学効果に基づく超精密磁場モニター法を実								
	現する。								
	こうして新しい領域で有限の EDM が見出されれば、標準模型を超えた物理の存								
	在の動かぬ証拠となる。一方この領域よりも EDM が小さいことがわかれば、提唱								
	されている理論に実験からの制限が与えられる。								
当該研究課題	1) "Nuclear Spin Maser with an Artificial Feedback Mechanism", H. Yoshimi, K. Asahi,								
と関連の深い	K. Sakai, M. Tsuda, K. Yogo, H. Ogawa, T. Suzuki, and M. Nagakura, Phys. Lett. A 304,								
論文・著書	13-20 (2002).								
(研究代表者	2) "Measurement of parity-nonconserving rotation of neutron spin in the 0.734-eV p-wave								
のみ)	resonance of ¹³⁹ La", T. Haseyama, K. Asahi, J.D. Bowman et al, Phys. Lett. B 534 (2002)								
	39-44.								
研究期間	平成 1	5年度	~ 19年度(5年間)					
研究経費	平成 1	5 年度	平成16年度	平成 1	7年度	平成 1	8年度	平成19年度	合計
(16年度以		千円	千円		千円		千円	千円	千円
降は内約額) 21,500 17,20			17,200		13,700		14,400	9,200	76,000
ホームページアドレス				なし					