Principal Res	searcher Ken-ichi Honma						Number of		5
							Rese	archers	
Research Institution		Profess	sor, Graduate	School of	dicine,	Location of		Sapporo City	
• Department • Title		Hokkai	ido University,				Inst	itution	
Title of	Understanding of the Biological Clock as a System								
Project									
Abstract of	The aim of this research project is to understand the mammalian biological clock (s) as a								
Research	system from molecular to behaviors.								
Project	The molecular mechanism of circadian oscillation is investigated in the neurons of the								
	hypothalamic suprachiasmatic nucleus (SCN) where the mammalian biological clock is								
	located. The oscillation system is believed to involve transcriptional/translational								
	auto-feedback loops in which multiple clock genes participate. In this project, the loop								
	system and its dynamics are elucidated. Furthermore, transduction pathways of the								
	circadian signals form the molecular loop to the cellular functions such as firing activity of								
	the neuron are identified. The biological clock in the SCN consists of multiple neurons.								
	The intercellular communication and mutual interaction of the oscillating neurons are critical								
	for the generation of the SCN circadian rhythms. Their mechanisms are investigated.								
	Thereby we clarify the organization of two sub-oscillating systems in the SCN which are								
	hypothesized to exist from behavioral studies. Finally, the mechanism of interaction is								
	investigated between the SCN circadian pacemaker and non-SCN pacemaker which directly								
	drives the behavioral rhythms.								
	The present research project is unique in understanding the functions of biological clock								
	at the molecular, cellular and behavioral levels and integrating the hierarchical and								
	multi-oscillatory system.								
References	S.Honma,Y.Kato and K.Honma. Dec1 and Dec2 are regulators of the mammalian								
	molecular clock Nature, 149:821-824(2002)								
	W.Nakamura, S.Honma,and KHonma. Clock mutation lengthens the circadian period								
	without damping rhythms in individual SCN neurons. Nature Neurosci., 5:399-400 (2002)								
Term of Project	Fiscal years 2003-2007 . (5years)								
Budget	FY200)3	FY2004	FY200)5	FY200	6	FY2007	TOTAL
Allocation	3	5,000	18,800	11,600		11	,600	9,900	86,900
(in thousand of yen)									
Homepage Address				http://www.med.hokudai.ac.jp/~phys-1w/					