Title of project	Basic Surveys and Simulation Exercises for a Grand Design of Future Higher
	Education System
Head Investigator	Motohisa KANEKO, The University of Tokyo, Graduate School of
Name	Education, Professor
Abstract of	With the rapid structural changes in the economy and society, Japan needs to
Research Project	redefine its higher education system. Construction of such a grand-design requires a
	solid empirical basis and logical examinations on policy instruments. This project
Number of	aims at responding to such needs through three sub-projects: 1) large-scale surveys
Researchers: 23	on high school students, college and university students and adults on their attitudes
	and experiences towards higher education and its relevance to their needs; 2)
	international comparisons on financing and governance of higher education
Term of	institutions: and 3) identification of policy alternatives and simulation exercises of
Project: 2005-2009	their consequences.

Title of project	Establishing a new framework for realizing effective transnational business litigation
Head Investigator	Kawano Masanori, Nagoya University, Graduate School of Law, Professor
Name	
Abstract of	In our globally expanding market society legal disputes become transnational
Research Project	in character. In the international business disputes there are many difficult
	problems to which litigants and courts would face. One of the most serious
	problems is how to get information on foreign legal matters. We do not have
Number of	now an appropriate and effective method to get them.In this project we are
Researchers: 3	going to establish a personal network of internationally admitted distinguished
	legal scholars for exchanging and discussing matters concerning not only
	fundamental structures of procedural and substantial frameworks but also
Term of	actual legal issues of respective countries. In this research we would like to
Project: 2005-2009	establish a new way for comparative study of commercial litigation.

Title of project	Comprehensive studies of global greenhouse gas cycles in the atmosphere, terrestrial biosphere and oceans
Head Investigator	Takakiyo Nakazawa, Tohoku University, Graduate School of Science,
Name	Professor
Abstract of	To cope with global warming, it is indispensable to predict and control future
Research Project	concentration levels of greenhouse gases in the atmosphere, which is achieved
	by understanding their global cycles. In this study, the concentration and
	isotopic ratio distributions of major greenhouse gases, carbon dioxide,
Number of	methane and nitrous oxide over a geographically wide area are elucidated
Researchers: 13	using various observation platforms, and their variation histories are
	reproduced by analyzing past air preserved in polar ice sheets. In addition, we
	also estimate global budgets of anthropogenic greenhouse gases, as well as
Term of	examine causes of variations of the relevant gases and their emission and
Project: 2005-2009	destruction processes, using global cycle models.

Title of project	Development of superefficient entangled-photon sources, detectors and entanglement recovery protocol
Head Investigator	Keiichi Edamatsu, Research Institute of Electrical Communication, Tohoku
Name	University, Professor
Abstract of	Recent progress of quantum info-communication technology attracts much
Research Project	attention. Entanglement, the non-local property of quantum systems, plays a
	central role of the novel quantum info-communication technology. This research
	project aims at the development of generation, detection and control techniques of
Number of	entangled photons toward the practical quantum info-communication technology.
Researchers: 10	Specifically, we focus on the following subjects:
	1) development of superefficient entangled-photon sources and detectors,
	2) generation and control of entangled photons in semiconductors, and
Term of	3) development and demonstration of entanglement recovery protocol, which is
Project: 2005-2009	indispensable to long-distance quantum communication.

Title of project	Silicon CMOS Photonics
Head Investigator	Kazumi Wada, The University of Tokyo, Department of Materials
Name	Engineering, Professor
Abstract of	Si LSIs together with optical communication networks have been the building
Research Project	blocks of the internet society. To achieve higher figure of merit, a strong demand
	exists on monolithic integration of electronic and photonic devices on a Si chip.
	Challenging issues are that photonics requires various kinds of devices based on
Number of	various material platforms. To emulate Si LSIs that only consist of transistors, the
Researchers: 1	current trend for integration is to reduce "material diversity of photonic devices",
	thereby utilizing huge benefits of Si CMOS-compatibility of materials and
	processes. The present research project "Si CMOS Photonics" pursues a more
Term of	fundamental solution, i.e., to unify photonic functions into novel CMOS device(s)
Project: 2005-2009	and to simplify integration with reducing "device diversity of photonic devices".

Title of project	Development of Functional Nanospace Chemistry with Mesoporous Inorganic
	Materials
Head Investigator	Masakazu Iwamoto, Tokyo Institute of Technology, Chemical Resources
Name	Laboratory, Professor
Abstract of	Although a lot of studies on nanometer-sized pores (nanopores) have been carried
Research Project	out in the world after the synthesis of mesoporous silica (MPS), most of them are
	based on the high surface areas or the large pore diameters. The objectives of the
	present study are to develop novel chemical functions by using mesoporous
Number of	inorganic materials. The research can be divided into three fields; the
Researchers: 8	environmentally benign catalysis in the nanopores, the creation of new functions
	in the pores, and the preparation of photo-responsible mesopores and their
	application. At present, the asymmetric oxidation of sulfide on Ti-MPS and the
Term of	generation of acidity due to the formation of nanopores can indeed be recognized.
Project: 2005-2009	In addition, the conversion of ethene to propene is newly established on Ni-MPS.

Title of project	The Chemistry of Unsaturated Compounds of Heavier Main Group Elements:
	Pursuit of Novel Properties and Functions
Head Investigator	Norihiro Tokitoh, Kyoto University, Institute for Chemical Research, Professor
Name	
Abstract of	There has been much interest in the chemistry of unsaturated bonding systems
Research Project	containing heavier main group elements from a viewpoint of heavier analogues of
	organo- π -electron systems such as polyacetylenes and PPV. Although it is difficult
	to synthesize and isolate such heavier organo- π -electron systems due to their
Number of	inherent extremely high reactivity, it has been demonstrated that they can be handled
Researchers: 7	as stable compounds by taking advantage of kinetic stabilization. The purpose of
	this project is the synthesis and elucidation of the properties of novel extended
Term of	organo- π -electron systems containing heavier main group elements in pursuit of
Project: 2005-2009	novel physical properties from the viewpoint of developing new functions.

Title of project	Basic Study of Space Weather Prediction
Head Investigator	Kazunari Shibata, Kyoto University, Graduate School of Science, Kwasan and
Name	Hida Observatories, Professor, Director
Abstract of	Space environment around the Earth has often suffered from violent space storms,
Research Project	so that serious damages have occurred on artificial satellites, telecommunication,
	power distribution grids, etc. Even the health of astronauts may be in danger by
	energetic particles from solar flares. In order to escape from these damages and
Number of	danger, we need to develop space weather prediction. The purpose of this project
Researchers: 11	is to develop a physical model of solar-terrestrial phenomena and space storms as
	a basis of space weather prediction, by resolving fundamental physics of key
	phenomena from solar flares and coronal mass ejections to magnetospheric storms
Term of	under international cooperation program CAWSES (Climate and Weather of the
Project: 2005-2009	Sun-Earth System).

Title of project	Molecular structure and vibrational dynamics studied by Terahertz radiation
	spectroscopy
Head Investigator	Keisuke Tominaga, Kobe University, Molecular Photoscience Research
Name	Center, Professor
Abstract of	One Terahertz (THz) corresponds to 33 cm ⁻¹ , and this frequency region exists
Research Project	between microwave and light. There have been a number of spectroscopic
	studies in this far-infrared frequency region. In spite of that, this region has been
	called as an unexplored frequency region. Recently, there has been rapid
Number of	development in technologies of generation and detection of THz radiation. The
Researchers: 5	theoretical formalism to analyze the far-infrared spectra has been also developed.
	In this study researchers of THz technology and molecular science cooperatively
	stimulate each other to perform development and construction of new apparatus
	and measurements on various kinds of molecules and materials to understand
Term of	natures of molecular interactions and dynamics of molecules in condensed phases.
Project: 2005-2009	We aim to develop a field of "THz molecular science".

Title of project	Research for Hybrid System comprised Laser Super Cavity and Off-Axis
r f J	Parabolic Reflective mirrors toward International Linear Collider
Head Investigator	Junji Urakawa, Inter-University Research Institute Corporation, High Energy
Name	Accelerator Organization, Accelerator Laboratory, Professor
Abstract of	The technologies for the storage of pulsed laser into optical cavity and the laser
Research Project	focusing by off-axis parabolic (OAP) reflective mirrors are applied to the
	development which will realize the generation of 1mJ/10psec-pulse laser beam with
	high repetition rate of 357MHz. We demonstrated the peak-power storage more than
Number of	1000 into the 42cm optical cavity comparing injected peak-power of the laser. On
Researchers: 10	the other hand, several experiments have showed a few micron laser focusing to
	make good collision efficiency with electron beam. We also generated the 56MeV
	γ -ray of 2.0x10 ⁷ /30psec based on Compton scattering.We proposed the hybrid
	system comprised laser super cavity with high reflective plane mirrors and off-axis
	parabolic reflective mirrors to realize sub-micron meter laser focusing at the center
	of the optical cavity. This compact super optical cavity will be applicable to γ - γ
Term of	collider and to the generation of high quality photon beam for various research
Project: 2005-2009	applications.

Title of project	Regulation mechanism of biomineralization based on interaction between organic matrices and inorganic crystals
Head Investigator	Hiromichi Nagasawa, Graduate School of Agricultural and Life Sciences, The
Name	University of Tokyo, Professor
Abstract of	Various organisms from bacteria to vertebrates have mineralized hard tissues called
Research Project	biominerals, and the mineralizing function is called biomineralization. Biominerals
	contain a small amount of organic materials, which are believed to be essential for
	biomineralization, although the mechanism remains unknown. This research aims at
Number of	clarifying the biomineralization mechanism using some representative biominerals
Researchers: 4	by analyzing the mode of interaction between organic materials and inorganic
	crystals, thereby displaying the common mechanism underlying each
Term of	biomineralization. Through this research, we would like to establish a new
Project: 2005-2009	interdisciplinary research area by combining advanced bioscience with mineralogy.

Title of project	Function and regulatory system of water transporting aquaporin channels
Head Investigator	Sei Sasaki, Tokyo Medical and Dental University, Department of Nephrology,
Name	Professor
Abstract of	Body water homeostasis is essential for survival of mammals. Water transport
Research Project	occurs through specialized channels called aquaporin (AQP). Impairment of AQP
	function causes various water balance disorders. Among the AQP family, some
	members have other functions than water transport. We are going to clarify the
Number of	various functions of AQP family using the cell culture system and gene targeting
Researchers: 4	mouse models. Intracellular regulation of aquaporin should be precise and dynamic
	to maintain strict regulation of water balance. We will clarify the molecular
Term of	mechanisms of intracellular trafficking of AQP focusing on AQP-binding protein
Project: 2005-2009	complex.

Title of project	Osteoimmunology
Head Investigator	Hiroshi Takayanagi, Tokyo Medical and Dental University, Department of Cell
Name	Signaling, Professor
Abstract of	The crosstalk between the immune and skeletal systems or the interdisciplinary field
Research Project	called "osteoimmunology" has attracted much attention in recent years. Receptor
	activator of NF-KB ligand not only plays an essential role in the physiological
	induction of osteoclasts but also plays an important role in inflammatory bone
Number of	destruction. Furthermore, nuclear factor of activated T cells (NFAT) c1 has been
Researchers: 4	identified as a master transcription factor for osteoclastogenesis and signaling
	through immunoglobulin-like receptors has shown to be essential for the induction
	of NFATc1. Based on these epoch-making achievements, we aim to understand the
	molecular mechanism underlying the regulation of the skeletal system by the
Term of	immune system comprehensively. We believe that the results will contribute to the
Project: 2005-2009	establishment and development of the new research field, osteoimmunology.

Title of project	Analyses of the photosynthetic oxygen evolving system that sustains the global environment - Reaction mechanisms, acquisition and succession processes	
Head Investigator	Mamoru Mimuro, Kyoto University, Graduate School of Global	
Name	Environmental Studies, Professor	
Abstract of	Oxygen evolution by photosynthetic organisms supplies electrons from water	
Research Project	molecules, and is the most fundamental process for energy conversion.	
	Approximately 2.7 billion years ago, cyanobacteria acquired the oxygen evolving	
	system. This system was finally succeeded by higher plants, and sustains the global	
Number of	environments and all lives on the earth. The oxygen evolving system is a unique	
Researchers: 5	electron transfer system operating under oxidation potential higher than +1.0V; it	
	requires the specific mechanism for stabilization of reaction intermediates.	
	Acquisition, reaction mechanism, and succession of the oxygen evolving system are	
	subjects to be studies urgently for full understanding of the energy conversion and	
	sustainability of global environments. We will adopt a unique method that is lined	
Term of	by the analysis on the "intermediates of evolutionary steps" of three unique	
Project: 2005-2009	cyanobacterial species.	

Title of project	New insights into the photosynthetic electron transport networks
Head Investigator	Toshiharu Shikanai, Graduate School of Agriculture, Kyushu University,
Name	Associate Professor
Abstract of	The light reactions of photosynthesis convert light energy to NADPH and ATP,
Research Project	which are utilized by living organisms. The process is often depicted by the linear
	electron transport from water to NADP ⁺ , but the more complex reactions are
	involved in the chloroplast. Although light energy is essential for photosynthesis,
Number of	excessive light energy causes the generation of reactive oxygen species. To cope
Researchers: 4	with the fluctuating light environments, electron transport pathway has several
	branches. Especially, photosystem I cyclic electron transport is a key regulator by
	maintaining the proper ATP/NADPH ratio and also by regulating the dissipation of
	excessive light energy. Our knowledge is still limited on this network of electron
Term of	transport. In this research program, we will develop the new insight of research by
Project: 2005-2009	combining recent techniques of molecular genetics and biochemistry.

Title of project	Activation of stem cells and neurogeneis in adult brains: their regulatory mechanism and visualization	
Head Investigator	Hideyuki Okano, Keio University School of Medicine, Department of	
Name	Physiology, Professor	
Abstract of	We have previously demonstrated that adult brain contains neural stem cells, using	
Research Project	the RNA binding protein Musashi1 as a marker. This finding suggests that	
	activation of endogenous neural stem cells in addition to cell transplantation can	
	be a strategy for neural regeneration. However, the mechanisms for maintenance	
Number of	and activation of the neural stem cells in the adult brain are largely unknown. In	
Researchers: 3	this project, we will study molecular mechanisms regulating the maintenance and	
	activation of adult neural stem cells as well as their involvement in the dynamic	
Term of	regulatory mechanisms of brain homeostasis, which will be useful information to	
Project: 2005-2009	develop novel therapies for neural diseases.	

Title of project	Unraveling molecular mechanisms to recreate 3D organ architecture	
Head Investigator	Kiyokazu AGATA, Kyoto University, Graduate School of Science, Department	
Name	of Biophysics, Professor	
Abstract of	To make regenerative medicine a reality, the fundamental questions of "how stem	
Research Project	cells form functional organs and tissues" must be pursued. To achieve this,	
	understanding "polarity" during development and regeneration, or the	
	mechanisms of positional information is crucial. Investigating the molecular	
Number of	mechanisms of how stem cells recognize each other and develop polarity and	
Researchers: 1	positional information during regeneration is the theme of our research. More	
	specifically, we employ the highly regenerative planarian, which has stem cells	
	distributed all over its body, as a model organism to elucidate how organs such as	
Term of	the brain and pharynx regenerate in function and form from stem cells, and take	
Project: 2005-2009	these findings to endeavor the regeneration of mammalian organs.	

Title of project	Biomedical application of gas biology through multidisciplinary approaches	
Head Investigator	Makoto Suematsu, Professor and Chair, Department of Biochemistry, School	
Name	of Medicine, Keio University	
Abstract of	H ₂ , CH ₄ , CO and NH ₃ Such gases are mementos produced upon creation of	
Research Project	our universe that constitute a primitive source of life. Humankind is one result of	
	evolution generated from the source of life. In this program of Grant-in-Aid for	
	Creative Research Science, we challenge to establish gas biology for deciphering	
Number of	the role of gases in maintaining homeostasis of biological systems. To	
Researchers: 6	understand how gases elicit enzyme and cellular responses, integration of	
	multidisciplinary approaches is essential: computer-assisted, high-throughput	
	technology for grabbling metabolome (informatics of small molecular metabolites	
	as a whole), advanced physicochemical technology for structural biology and	
	multifunctional bioimaging analyses of organ microcirculation in vivo are such	
Term of	technologies. Final goal of the project involves application of basic knowledge on	
Project: 2005-2009	gas biology to medicine.	

Title of project	Comprehensive Studies toward Synthesis of Glycoproteins
Head Investigator	Yukishige Ito, RIKEN,Synthetic Cellular Chemistry Laboratory, Discovery
Name	Research Institute, Chief Scientist and Director
Abstract of	Glycosylation is an important modification of proteins. Structures of the sugar
Research Project	portion of glycoproteins (glycans) are highly diverse. Their relationship with
	various biological and medical phenomena, such as protein folding, transport
	and degradation, cell differentiation, immune response and malignant
Number of	transformation. In order to reveal the functions of glycoprotein,
Researchers: 3	comprehensive studies toward synthesis of glycoprotein glycans will be conducted.
	Glycoproteins derived from biological sources are heterogeneous in most
	cases. Chemical synthesis of glycoproteins is expected to be powerful in order
	to understand their functions precisely, however still being an unprecedented
Term of	challenge. To achieve that, various approaches will be investigated to aim the
Project: 2005-2009	first total synthesis of biologically active glycoproteins.

Title of project	Chemical proteomics to reveal interaction between chemicals and proteins at angstrom level	
Head Investigator	Hiroyuki Osada, RIKEN, Discovery Research Institute, Chief Scientist	
Name		
Abstract of	In order to understand dynamic biological system, it is necessary to analyze	
Research Project	the interaction between bioactive small molecules (ligands) and their target	
	proteins (receptors). This approach is so-called "Chemical Proteomics", and	
	we challenge the following subjects. Detection technique for interaction	
Number of	between a ligand and its receptor and a rapid analyzing system for a	
Researchers:7	structure-activity relationship will be developed. Combining X-ray	
	crystallography and NMR analyses, the interaction between a ligand and its	
	receptor will be elucidated. The results elucidated above will be confirmed	
	by rational modification of the ligand as well as amino acid substitution of the	
Term of	receptor. Chemical proteomics is expected to contribute to drug discovery	
Project:2005-2009	and understand the biological system.	